
RC25004 (W1005-136) May 28, 2010
Computer Science

IBM Research Report

LIME
The Liquid Metal Programming Language

Language Reference Manual

Joshua Auerbach, David F. Bacon, Perry Cheng, Rodric Rabbah
IBM Research Division

Thomas J. Watson Research Center
P.O. Box 704

Yorktown Heights, NY 10598

Research Division
Almaden - Austin - Beijing - Cambridge - Haifa - India - T. J. Watson - Tokyo - Zurich

Contents

1 Introduction 7
1.1 Java Compatibility . 8
1.2 Package lime.lang . 8
1.3 The Lime Development Kit . 8
1.4 More About the Manual . 9

2 Generics 10
2.1 The Set of Reifiable and Instantiable Types 11

2.1.1 Default Initial Value . 14
2.1.2 Instanceof with Type Parameter . 14

2.2 Primitive Types . 14
2.3 Restrictions on the Use of Java Generics in Lime 15
2.4 Reflection, Classes, and Class Literals . 15
2.5 Type variables in Static Members . 16

2.5.1 Type Parameters in Static Nested Classes 16
2.6 Some Non-Obvious Limitations of Type Variables in Lime Generics 17
2.7 Source Availability . 17
2.8 Ordinal Parameters . 17
2.9 Java Compatibility . 18
2.10 New Grammar . 18

3 Type Definitions 20
3.1 Java Compatibility . 21
3.2 New Grammar . 21

4 Type Inference 22
4.1 New Grammar . 22

5 User-defined Operators 24
5.1 Compound Operators . 25
5.2 Method-like Syntax . 26
5.3 Java Compatibility . 26
5.4 New Grammar . 26

1

6 Values 28
6.1 Value Classes . 28
6.2 Value versus Non-Value Types . 29
6.3 Initialization of Values . 31
6.4 Type-checking Value Types . 31
6.5 Universal Classes and Interfaces . 32
6.6 Generated methods . 34
6.7 Special Rules for Assignment of Null . 35
6.8 Next and Previous Operators for Values . 35
6.9 The Top of the Value Type Hierarchy . 35
6.10 The Role of the Primitive Types . 37
6.11 Java Compatibility . 38
6.12 New Grammar . 38

7 Bounded Types 40

8 Ranges 42
8.1 New Grammar . 42

9 Ordinals 44
9.1 Shorthands for Ordinal Types. 45
9.2 Java Compatibility . 46
9.3 New Grammar . 46

10 Value Enums 47
10.1 Default Values . 48
10.2 Bit Literals . 48
10.3 Java Compatibility . 48
10.4 New Grammar . 48

11 Strings 49
11.1 Java Compatibility . 49

11.1.1 ToString Conversion . 50
11.1.2 Equality Relationships . 50

12 Arrays 51
12.1 Range Indexing . 53
12.2 Multidimensional Arrays . 54
12.3 Java Arrays . 56
12.4 Confined Integer and Range Expressions . 56
12.5 Array Creation . 58

12.5.1 Repeats in Array Initializers . 59
12.6 Arrays as Generic Types . 59
12.7 Bit Array Literals . 61

2

12.8 Java Compatibility . 61
12.9 New Grammar . 61

13 Tuples 64
13.1 Tuple Element Access . 65
13.2 Tuple Element Binding . 65
13.3 Java Compatibility . 66
13.4 New Grammar . 66

14 Local and Global Methods 68
14.1 Other Restrictions . 69
14.2 Repeatable Static Fields . 69
14.3 Local/Global Polymorphism . 70

14.3.1 Generics and Glocal Methods . 71
14.4 Multiple Method Definitions . 71
14.5 The Mutable Class and the Local Interface 72
14.6 Debugging . 73
14.7 Java Compatibility . 74
14.8 New Grammar . 80

15 Stream Computation 82
15.1 Stream Types . 84

15.1.1 Inspection and Iteration . 86
15.2 Ports . 87
15.3 Tasks . 87

15.3.1 Isolation . 88
15.3.2 Task Types . 89
15.3.3 Logical Rates . 90

15.4 Filter Creation . 90
15.4.1 Filters from Static Methods . 91
15.4.2 Filters from Value Instance Methods and Operators 91
15.4.3 Filters from Non-value Instance Methods 91
15.4.4 Abbreviation of Worker Methods . 93

15.5 Direct Use of Filters . 93
15.6 Connecting Ports and Streams . 93
15.7 Sources and Sinks . 94

15.7.1 Sources . 94
15.7.2 Sinks . 95

15.8 Task States . 96
15.9 Constant Task Parameters . 99
15.10Splitting and Joining . 99

15.10.1 Joining Streams . 99
15.10.2Splitting a Stream . 99

3

15.10.3Splitters and Joiners . 100
15.10.4Other CompoundTask Types . 101
15.10.5Compound Connect Operations . 104

15.11Schedulability of Task Graphs . 106
15.12New Grammar . 106

16 Rate Matching 109
16.1 Size Directives . 111
16.2 Underflow Handling . 111
16.3 Shifting . 112
16.4 New Grammar . 113

17 Messaging 114
17.1 Timing of Message Delivery . 116

17.1.1 Downstream Messaging . 116
17.1.2 Upstream Messaging . 118
17.1.3 Unspecified Delay . 121
17.1.4 Matchers . 121
17.1.5 Discussion . 122

17.2 Java Compatibility . 122
17.3 New Grammar . 122

18 Collective Operations and Reductions 124
18.1 Collective Operations . 124

18.1.1 Data Parallelism . 127
18.2 Reduction . 128

18.2.1 Optimization . 129
18.3 Java Compatibility . 129
18.4 New Grammar . 129

19 The “Closed World” Model 131
19.1 New Grammar . 132

20 Java Compatibility 133
20.1 Source Compatibility with Java . 133

20.1.1 Lexical Issues: Keywords . 133
20.1.2 Semantic Issues . 133

20.2 Binary Compatibility with Java . 134
20.3 Gotchas . 134

20.3.1 String Equality . 134
20.4 The pH Tool . 135
20.5 New Grammar . 135

4

21 Testing 137
21.1 Random Values . 137
21.2 Interface Testing . 138

5

List of Figures

15.1 A Simple Stateless Filter . 83
15.2 A Compound Filter Composed from Three Filters 83
15.3 A Stateful Filter connected to a Rate Matcher that converts a stream of int[[2]]

into a stream of int. 84
15.4 A Compound Filter containing a Split and a Join 85
15.5 A Complete Stream Graph with a Source, Filter, and Sink. Sources and Sinks

need not be isolated and may therefore access the heap and other forms of
global state. 86

17.1 Different Messsage Types . 117
17.2 Downstream Messaging Example . 118
17.3 Downstream Messaging Example with Delay 118
17.4 Upstream Messaging Example with overly eager schedule 120
17.5 Upstream Messaging Example with lazy schedule can handle zero delay . . . 120

6

Chapter 1

Introduction

Lime is a general-purpose programming language that extends the Java programming lan-
guage in several ways. The Lime extensions are designed to make it feasible to realize
implementations of large portions of a program in hardware via direct synthesis into a pro-
grammable or reconfigurable logic fabric such as a Field Programmable Gate Array (FPGA).
Residual portions of the program doing hard-to-synthesize (and usually infrequent) opera-
tions such as dynamic class loading continue to run as bytecodes in a hosting JVM. For rapid
iteration during development, the entire language will always run as bytecodes.

The increasing availability of systems with FPGAs offers an opportunity to customize
processing architectures according to the applications they run. An application-customized
architecture can offer extremely high performance with very low power compared to more
general purpose designs. However, FPGAs are notoriously difficult to program, and are
generally programmed using hardware description languages like VHDL and Verilog. Such
languages lack many of the software engineering and abstraction facilities that are taken
for granted in modern Object-Oriented (OO) languages. In hybrid architectures which cou-
ple conventional CPUs to programmable (e.g., FPGA) or fixed-function accelerators (e.g.,
cryptography engine), additional complexity is introduced by the fact that the CPU and ac-
celerators are programmed in completely different languages with very different semantics.

Lime allows hybrid systems (e.g., CPU+FPGA architectures) to be programmed in a
single high-level OO language that maps well to both architectures. While at first glance
it may seem that conflicting requirements for programming these different kinds of systems
create an inevitable tension that will result in a hodgepodge language design, it is our belief
that when the features are provided at a sufficiently high level of abstraction, many of them
turn out to be highly beneficial in both environments.

By using a single language we open up the opportunity to hide the complexity of domain
crossing between CPUs and accelerators. Furthermore, we can fluidly move computations
back and forth between the types of computational devices, choosing to execute them where
they are most efficient or where we have the most available resources.

Our long-term goal is to “JIT the hardware”—to dynamically select methods for com-
pilation and synthesis to hardware, potentially taking advantage of dynamic information in
the same way that multi-level JIT compilers do today for software.

7

An early version of Lime, focusing on the value types, was first described in [3]. The
current language (as of June, 2010) is described in [1], including new features for streaming,
bounded types, local/global modifiers, and so on. That paper provides motivations, exam-
ples, related work, and a good introduction to the language. This manual is designed more
as a reference.

1.1 Java Compatibility

Lime is based on Java and there is an intended level of compatibility with Java. From a source
standpoint, all Java programs either already are legal Lime programs or can be converted
to Lime programs via a purely syntactic transformation. Lime keywords, if used already
as identifiers in the Java program, can be marked with Lime’s lexical escape convention.
Lime’s differing semantics for generic types and arrays can be initially suppressed by marking
such constructs with Lime’s compatibility escape convention. Once this has been done,
the program can be gradually transformed to take more and more advantage of Lime’s
enhancements.

From a binary standpoint, code compiled with a Java compiler can interoperate with
code compiled by a Lime compiler in many ways; Java compatibility is described in detail
in Section 20. In addition, as particular Lime features are introduced, sections titled “Java
Compatibility” will discuss particular issues raised by those features.

1.2 Package lime.lang

Just as Java has a package java.lang which is implicitly imported on-demand into every
compilation unit, Lime has an equivalent package lime.lang. In a Lime program, both lime.
lang and java.lang are implicitly imported on-demand into every compilation unit. Importing
either of these packages explicitly is not an error but is not necessary.

1.3 The Lime Development Kit

Lime provides a set of classes (collectively called the LDK or “Lime Development Kit”)
similar in spirit to the Java Development Kit. In particular, Lime has its own set of hardware
friendly collections and also supplies hardware-friendly scalar types. Types in lime.lang and
lime.util are discussed as appropriate in this manual but it is not a goal of the manual to
provide a complete exposition of the LDK. Either a discussion of the LDK or javadoc-style
documentation may be provided in a future publication.

8

1.4 More About the Manual

Although the exposition in this manual is informal and example driven, there is an attempt
to state all the known semantic issues clearly and to call out any new grammar (including
new reserved words or lexical symbols). Grammatic productions are written as extensions to
the grammar presented in the chapters of the Java Language Specification, third edition (not
the summary grammar of the appendix, which is different). Lexemes to be taken literally
are in single quotes, e.g. ’task’. Other lexical tokens are capitalized (e.g. IDENTIFIER).
Non-terminals are in normal text. Otherwise, grammar descriptions avoid meta-syntactic
conventions other than the standard BNF meta-operators “::=” and “|”, and the subscript
“opt” meaning optional.

Any quoted word that appears in a grammar section in this manual should be assumed
to be a lexically reserved keyword. Lime adds several such keywords that are not in Java,
such as task, local, global, universal, and split.

9

Chapter 2

Generics

Generic types in Lime are a forward-compatible superset of Java’s generic types, with in-
creased expressive power. Since use of the new features inhibits interoperability with Java,
Lime allows selected generic types to be labelled as Java compatible. Thus, there are two
kinds of generic types in Lime.

� Java generics are compiled by erasure as in Java and are fully interoperable with Java.

� Lime generic types support primitive types as type arguments and permit parame-
terized types and type variables to participate in runtime operations such as array
allocation, instance allocation, casts, and instanceof. They also allow type variables to
be used in the definition of static members.

A generic type is classified by the following rules.

1. If a generic type was compiled by a Java compiler and is present only in class file form,
it is Java generic.

2. If a generic type was compiled by the Lime compiler and is not otherwise marked as
being a Java generic, it is a Lime generic.

3. The “˜” character between the class or interface name and its type parameters (e.g.
class Foo˜<T>{...} marks the type as a Java generic.

The marking of a generic type occurs only on the type definition. Both kinds are used
in the same way: one says Foo<String> x, not Foo˜<String> x.

The special mark indicating a Java generic may only appear on a top-level (non-nested)
type. It extends by implication to all nested types (including nested static types).

The same distinction between Java and Lime generics applies to generic methods. In
this case, the “˜” character comes before the method-level type parameters. A Lime generic
instance method may not override or implement a Java generic instance method. For exam-
ple, if a Lime class implements java.util.Collection<T> the method <T> T[] toArray(T[] a)
method must be implemented as ˜<T> T[] toArray(T[] a).

10

The following sections describe the semantic differences between Lime generics and Java
generics and cover some special topics related to generic types in Lime. The semantics of
Lime generics are similar in flavor to NextGen [4] and LM [5] but are implemented differently,
support primitive types as type arguments, and include a strategy for backward compatibility
with Java (albeit at the expense of having two kinds of generics).

2.1 The Set of Reifiable and Instantiable Types

The Java specification (3rd edition, section 4.7) defines what it means for a type to be
reifiable. Only the reifiable types are permitted as the item type of an array allocation,
or as the right-hand-side of instanceof. If a non-reifiable type is used in a cast, the cast
is allowed but a warning is issued and the cast has a different effect at runtime than the
apparent intent. Somewhat confusingly, a type doesn’t have to be reifiable to be instantiable
(a different concept, considered below). The reifiable property captures the fact that the
type is distinct from other types for purposes of runtime checking.

In Lime, we retain the rule that a type must be reifiable to be used in array allocations and
instanceof, or to be runtime-effective when used in a cast. However, we redefine “reifiable”
to take into account the difference between Java generics and Lime generics.

To review, in Java, a type is reifiable if it conforms to one of the following.

� It refers to a non-generic type declaration.

� It is a parameterized type in which all type arguments are unbounded wildcards.

� It is a raw type.

� It is a primitive type.

� It is an array type whose component type is reifiable.

Note that a type variable is never reifiable in Java, and most parameterized types are
not reifiable either.

In Lime, the rules are modified as follows (changes are emphasized).

� It refers to a non-generic type declaration (as in Java).

� With caveats discussed below it may be a parameterized type in which all type argu-
ments are unbounded wildcards (as in Java).

� It is a raw type derived from an Java generic type (raw types cannot be derived from
Lime generic types).

� It is a primitive type (as in Java).

� It is a type parameter of a Lime generic type.

11

� It is a parameterized type derived from a Lime generic type with all type arguments
being reifiable types.

� It is Lime array type whose component type is reifiable by these expanded rules or a
Java-compatible array type whose component type is reifiable by the older Java rules
(Lime has both an expanded and a Java-compatible syntax and semantics for arrays,
as is explained in section 12).

Note that the subset of Lime semantics involving only Java generics has the same seman-
tics as Java. The Lime generics are more expressive than the Java generics except that you
(usually) can’t express the raw type equivalent to a Lime generic by giving the type without
type arguments. There are a few minor exceptions to this rule, for purely syntactic reasons
noted in the relevant sections, but the resulting raw type can never become the type of an
expression, and therefore, the “unchecked conversion” described in the Java specification
section 5.1.9 cannot occur.

Lime is similar to Java in not providing full reification of wildcard types. This leads to a
subtlety in the case of parameterized types all of whose parameters are unbounded wildcards.
Such a type is considered reifiable in Java, but this works only because raw types are reifiable
in Java and the all-unbounded-wildcard case has the same runtime representation as a raw
type. In Lime, no type using wildcards can be fully reifiable since Lime does not represent
all the information present in a capture conversion at runtime. However, Lime follows Java
in allowing the unbounded wildcard in instanceof and in casts (although not as the item
type of an array). This is safe since the test is merely asking whether the type is some
parameterization of the generic type, which is readily answerable with the information at
Lime’s disposal.

To summarize what we’ve said so far, with examples, consider the following.

import java.util.List; /* from Java */
class Foo<T> { /* A Lime generic */

...
/* All of the following are legal inside the declaration of Foo */
new T[10];
if (x instanceof T) ...
new Foo<T>[10];
if (x instanceof Foo<T>) ...

/* The following is legal even outside the declaration of Foo */
new Foo<String>[10];
if (x instanceof Foo<String>) ...

/* The following is runtime effective and will issue no warning */
a = (T) x;
b = (Foo<String>) x;
c = (Foo<T>) x;

12

/* Illegal since List is a Java Generic */
new List<String>[10]; // error
new List<T>[10];

/* The following will cause a warning and will cast to the raw type */
d = (List<String>) x
e = (List<T>) x;

/* The following is illegal because only Java generics have raw types */
new Foo[10];

}
class Bar˜<S> { /* a Java generic */

/* The following are illegal because S is not reifiable */
new S[10]; // error
if (x instanceof S) ... // error

/* The following are still illegal even though Foo is a Lime generic because S is not
reifiable */

new Foo<S>[10]; // error
if (x instanceof Foo<S>) ... // error

/* But the following is allowed */
new Bar[10]; // raw type

/* The following will cause a compiler warning and will not check anything at runtime
*/

a = (S) x;
}

Now consider Java’s rule for what types are instantiable. This is described in section
15.9 of the specification. Note that not all reifiable types are instantiable and not all in-
stantiable types are reifiable. Of course, to be instantiable, a class has to be non-abstract,
visible, etc. But, in addition, any wildcard type arguments at all will render a class non-
instantiable and naked type variables (e.g. new T()) are never instantiable. On the other
hand, a parameterized type (which is not reifiable) is nevertheless instantiable (but subject
to erasure).

Lime semantics are superficially similar in that wildcards also render a type non-instantiable
and naked type variables are often (though no longer always) non-instantiable. But, the re-
sulting objects in Lime carry unerased type information in many more cases, because many
more types are reifiable. Consider the following expression.

x = new Foo<T>();

13

Such an expression is instantiable in both languages. However, if Foo is an Java generic
type or T is a type parameter of an enclosing Java generic, then Foo<T> is not reifiable
and hence the resulting object will have only erased type information. It might, for example,
give an overly conservative answer to x instanceof Foo<String> because whether or not T
was bound to String has been lost. However, when a reifiable type is instantiated, the object
carries full unerased type information, so, the larger set of reifiable types in Lime means a
larger set of objects carrying such information.

In addition, Lime permits the expression new T() (without arguments) for the special
case where T is constrained to be a value type (as defined in section 6), because values are
guaranteed to have default constructors and Lime considers the dispatching to such con-
structors to be virtual. Otherwise, Lime must disallow instantiation of naked type variables
for reasons explored more fully in section 2.6.

2.1.1 Default Initial Value

The expression T.default, where T is any reifiable type variable, refers to the default value of
the type denoted by T in each instantiation (ie., the value to which fields of the type would
be initialized in the absence of an explicit initializer). For ordinary reference types, this is
null. For primitive types (see section 2.2) this is the appropriate form of zero or false. For
value types (see section 6), T.default == new T(). This supports type parameters that are
general enough to encompass both values and mutable classes.

2.1.2 Instanceof with Type Parameter

The instanceof operator normally is used to test whether an object is an instance of a type.
Lime generics allow type parameters to be used as the type being tested.

However, Lime also allows a type parameter to be used on the left-hand side of an
instanceof operator, as in

if (! (E instanceof RandomlyGenerable<E>)) {
throw new ContainedValueNotRandomlyGenerableException(this);

} else {
RandomlyGenerable<E> seeder = (RandomlyGenerable<E>) new E();

}

2.2 Primitive Types

The eight Java primitive types are valid substitutes for the type parameters of Lime generics
if they meet the restrictions implied by the extends clause of the type parameter. The
discussion of how a type parameter’s extends clause can possibly apply to primitive types is
deferred to Section 6.10. Lime does not guarantee that primitive types are never boxed when
used in this way, but the goal is to achieve efficiency consistent with a non-boxed (hence

14

probably specialized) implementation of those cases. In any case, any boxing that is done is
completely invisible; the primitive type is never exposed in its boxed form.

2.3 Restrictions on the Use of Java Generics in Lime

Because Java generic types are compiled by erasure, the stronger type safety guarantees
of Lime and the weaker ones of Java are sometimes in conflict. In many cases, the imple-
mentation can compensate by checking for Lime reification and comparing to the expected
type at critical program points, but one property in particular (discussed in section 6.2) is
that Lime’s value types may not be null. Checking for this property in a pervasive fash-
ion is inconsistent with reasonable efficiency. Consequent, it is illegal to instantiate a Java
generic type with a Lime value type or with a Lime reified type variable that could later be
instantiated with a value type. More details are provided in section 6.2.

2.4 Reflection, Classes, and Class Literals

Even though a larger set of types is reifiable in Lime, Lime does not guarantee that every
distinct type is represented by a distinct Class object. Rather, some degree of erasure (not
specified in this language definition) may occur in the implementation of types that are
reifiable only in Lime, such that types related by erasure may share a Class object. For
example, if Foo is a Lime generic class, then new Foo<String>().getClass() and new new
Foo<int>.getClass() may return the same object. The type-dependent runtime operations
are supported in some other way (e.g. by having instances carry type information).

The motivation for this restriction is that giving each distinct reifiable type its own class
object will imply either that every instantiation is uniquely compiled to a class file (too space
inefficient) or that Lime runs on a modified JVM (too confining in the short run).

The lack of a guarantee at the Class object level means that reflective variants of type-
dependent operations might not give the same answer as the language-supported variant.
That is, Lime does not guarantee that new T().getClass().isAssignableFrom(x.getClass()) is
exactly equivalent to x instanceof T. The latter is guaranteed to give a precise answer, but
the reflective variation can only be as precise as the degree to which class objects are actually
distinct.

To discourage the use of reflection on reifiable types not supported by unique class objects,
Lime makes no change to Java’s restrictions on the class literal expression. T.class and Foo<
String>.class are illegal in Lime just as they are in Java, regardless of whether the left-hand
sides are reifiable. Furthermore, to allow class literals to be used in the more limited ways
implied by the other restrictions, Lime does not forbid the use of a raw type with a class
literal (that is, even if Foo is a Lime generic type, the expression Foo.class is permitted and
is essentially equivalent to Foo<?>.class).

15

2.5 Type variables in Static Members

In Java, and hence in a Java generic type, the scope of a type parameter introduced in the
class or interface header includes the type’s non-static members only. In a Lime generic
type, the scope of each type parameter includes the static fields and methods. That is, type
parameters can be the types of static fields and the argument and return types of static
methods. They can also be used in the initializers of static fields or the bodies of static
methods.

If a static method is itself generic (has its own type parameters), then the method may
use both the method type parameters and the class type parameters.

There is a specific exception to this rule for the special case of a static main method that
is intended to be the startup method for an application. It is not a common practice to
place such methods in generic classes, but, if one were to do so in a Lime generic class, the
main method would be specifically excluded from using the class’s type parameters. This
restriction is necessitated by the technical details of running in an unmodified JVM.

The semantics for static members using type variables as if each distinct instantiation of
a Lime generic type has its own generation of static members, properly parameterized. This
does not necessarily imply that there is a distinct physical class file or class object for each
such instantiation.

Note that static members are statically resolved and so references to them must be
qualified by the full type, including type arguments.

class Foo<T> {
...
static T[] vals = new T[10];
static T getVal(int i) {

return vals[i];
}

}
...
int x = Foo<int>.vals[2];
String y = Foo<String>.vals[2];

In the previous example, there are two distinct copies of the field vals, once associated
with Foo<int> and the other with Foo<String>. They have different types and also different
contents.

2.5.1 Type Parameters in Static Nested Classes

Static nested classes are not considered to be in the scope of the type parameters of the
enclosing class. Thus, if it is desired to parameterize a nested static class, it must define its
own type parameters, and the uses of that nested class elsewhere in the enclosing class can
instantiate the nested class either with concrete types or which its own type parameters.

16

2.6 Some Non-Obvious Limitations of Type Variables

in Lime Generics

Since the type parameters of Lime generics are reifiable in Lime, we need to make clear that
these are still variables (the substituting type is unknown at the time the generic class is
compiled). In conjunction with some other principles, this fact may lead to some limitations
that will not be immediately obvious to initial Lime programmers.

Principle 1: Generic types should be type-checked on their own without knowing all uses.
Principle 2: Any instantiation of a generic type that was found correct under principle 1,

should be capable of being checked by comparing the type arguments to the extends clauses
(if any) of the type parameters. Instantiations that pass those checks should be legal.

Principle 3: Although Lime establishes new semantics for generic types, it respects Java
semantics for the resolution of type members, specifically, that only instance methods are
dispatched virtually, while static methods, all fields, and all constructors are dispatched
non-virtually.

Thus, even if T is a reifiable type variable, the static field and method references T.x and
T.y() have the same semantics as in Java, both in Java generics and in Lime generics. The
x and y referred to are those of a type appearing in the extends clause of T and not the
(unknown) fields or methods of the many possible substituting types.

Also, given object reference z of type T, the expression z.q where q is now an instance
field, not a static field, is similarly a reference to the field q defined in a type appearing in the
extends clause of T and not some unknown field q that might be introduced by a possible
substituting type.

Lime specifically holds that the default constructors of value types are virtually dis-
patched, which is why new T() is legal when T is known to be some value type. All other
constructors are treated as in Java, which is why the expression new T(...) cannot be ac-
cepted in general.

As will be further discussed in section 7, the special selectors .size, .first, .last, and .range
of the bounded types are also virtually dispatched, hence T.last (e.g.) has its expected

meaning when T is known to be a bounded type.

2.7 Source Availability

2.8 Ordinal Parameters

Syntactically, in Lime, a constant expression evaluating to a positive integer can appear as
a type argument in a parameterized type. This does not imply that Lime supports integer
parameters in a semantic sense; rather, such expressions are converted to ordinal types as
will be describe in section 9.1.

17

2.9 Java Compatibility

Instances of generic classes can only be passed to Java code if they match a signature that
Java understands. More specifically:

1. A Java generic class developed in Lime can be published for use by Java code (which
must itself be invoked from Lime) as long as its public API does not include any
Lime constructs (such constructs can be used internally in private members and the
implementation of methods).

2. A Lime generic class can only be passed to Java code by casting it to a type that Java
understands, either Object, or a Java generic supertype. This, in turn, only works on
the assumption that the Java code does not try to reflectively probe the instance and
use members that were not known to it when it was compiled. For example, Java
code that attempts to serialize a Lime generic object, then deserialize it and pass the
result back to Lime, may end up violating invariants important to Lime but unknown
to Java.

3. Static methods of a Lime generic class (whether or not they actually refer to class-level
type parameters in a way that would be illegal in Java) are not callable from Java
code. The only exception is a properly formed main method, which is kept in a strictly
Java-compatible form so that it can be invoked by the JVM’s application launcher.

Note that while it is legal for a Lime generic to extend or implement a Java generic, this
must be done consistent with the rule that a Java generic cannot be instantiated with a value
type. For example, a Lime generic collection class whose type parameter T can be any type
may not implement java.util.Collection<T>, because T permits the substitution of a value
type. On the other hand, if the collection declares the type variable as T extends Mutable<
T> (the Mutable type, discussed in section 14.5, precludes substitution by any value type),
then it is permitted to implement java.util.Collection<T>.

2.10 New Grammar

See section 4.5.1 of the Java Language Specification for ActualTypeArgument and section 4.2
for PrimitiveType.

ActualTypeArgument ::= PrimitiveType

See section 15.11 of the Java specification for FieldAccess, section 15.12 for MethodInvocation,
section 4.5.1 for TypeArguments, section 4.3 for TypeDeclSpecifier, and section 15.9 for ArgumentList.

18

MethodInvocation ::= LimeGenericType ’.’ TypeArgumentsopt IDENTIFIER ’(’ ArgumentListopt ’)’
FieldAccess ::= LimeGenericType ’.’ IDENTIFIER
FieldAccess ::= DefaultFieldAccess
LimeGenericType ::= TypeDeclSpecifier TypeArguments
LimeGenericType ::= LimeOrdinalType
DefaultFieldAccess ::= IDENTIFIER ’.’ ’default’

The revised FieldAccess and MethodInvocation syntax permits type arguments before the
dot (to convey class-level arguments) as well as after the dot, in the case of methods (to
convey method-level arguments) when accessing static fields or invoking static methods.

An additional change to support ordinal parameters is shown in section 9.3, which also
defines the LimeOrdinalType production used above.

See section 8.1 of the Java specification for NormalClassDeclaration, section 8.1.2 for
TypeParameters, and section 9.1 for InterfaceDeclaration. The following productions are re-
placed (only the initial portion is shown, the trailing portion is elided).

NormalClassDeclaration:::= ClassModifiersopt ’class’ IDENTIFIER TypeParametersopt ...
InterfaceDeclaration: ::= ClassModifiersopt ’interface’ IDENTIFIER TypeParametersopt ...

The affected productions are replaced as follows.

NormalClassDeclaration:::= ClassModifiersopt ’class’ IDENTIFIER LimeTypeParametersopt ...
InterfaceDeclaration: ::= ClassModifiersopt ’interface’ IDENTIFIER LimeTypeParametersopt ...
LimeTypeParameters ::= JavaGenericMarkeropt TypeParameters
JavaGenericMarker ::= ’~’

19

Chapter 3

Type Definitions

A typedef can be used to provide an alias for a type, allowing for more concise code. For
instance,

typedef Pixel = foo.bar.baz.RGBPixel;
typedef Dictionary = HashMap<String,String>;

It is also good practice to use typedefs when a global decision about a fundamental type
is made for the program. For instance,

typedef real = float;

allows the program to be easily adapted to use higher precision arithmetic if that becomes
desirable.

Semantically, a type definition is just one step above a lexical macro: type definitions
are checked for correctness and are subject to scoping and visibility rules (discussed below)
but, otherwise, the referenced type is substituted for the defined symbol prior to any other
semantic analysis.

Typedefs have the same scoping and visibility rules as class definitions. When introduced
at top level in a compilation unit, they may be labelled as public (otherwise they are just
package visible). If public, they can be imported and referred to from other packages by
their fully qualified name. When nested inside a class but outside any method, they are
implicitly static, accept the same visibility modifiers as a static nested class, and are referred
to in the same way. When nested inside a method body they are visible only there, as would
be the case for a local class definition.

A typedef whose right hand side is a generic type given without type arguments is treated
as a raw type.

typedef Lst = List; /* Raw type warning */
Lst<String> x; /* Error: lst is not a generic type */
typedef LstString = List<String>; /* Correct */
LstString x; /* Correct */

20

When a symbolic name is given to an array type the behavior of the resulting type has to
be understood in the context of Lime’s semantics for arrays, which are discussed in section 12.

3.1 Java Compatibility

Instances of classes containing nested (member or local) typedef clauses cannot be passed as
arguments to methods not compiled with a Lime compiler. On the other hand, the use of a
symbolic name introduced via typedef when creating an object that is later passed to a Java
method is not, by itself, a problem, as long as the actual type of the object, after resolution
of all typedef names, is not one that violates the first rule. Assuming that JavaBaz in the
following was compiled by a plain Java compiler, consider the examples.

class Bar {}
typedef Foo = Bar;
class Danger {

typedef uint = int;
}
JavaBaz baz = new JavaBaz();
Foo x = new Foo();
baz.do(x); // fine
baz.do(new Danger()); // illegal

3.2 New Grammar

See section 7.6 of the Java Language Specification for TypeDeclaration. See section 8.1.1 for
ClassModifiers. See section 4.1 for Type.

TypeDeclaration ::= LimeTypedef
LimeTypedef ::= ClassModifiersopt ’typedef’ IDENTIFIER = TypeDefType ’;’
TypeDefType ::= Type

21

Chapter 4

Type Inference

Lime performs local type inference for initialized field and variable declarations. Instead
of writing the type, the keyword var is used for mutable fields or variables and final for
immutable fields or variables. For instance,

var x = 3; // same as ”int x = 3”
final y = 3; // same as ”final int y = 3”

Note that type inference is performed purely locally. Thus, if the intent was for x to be
a double value, then either of the following declarations would be needed:

var x = 3.0;
double x = 3;

Either the type of the initialization expression must be exactly the intended type, or the
intended type must be declared explicitly and the initialization expression will be widened
as needed, if possible.

An explicit type may still be needed if the type of the variable or field will subsequently
change. For instance, the following two statements are equivalent:

HashSet<Foo> foos = new HashSet<Foo>();
var foos = new HashSet<Foo>();

however, if a different type is subsequently desired, then the initial declaration must use a
more general type:

Set<Foo> foos = new HashSet<Foo>();
...
foos = new TreeSet<Foo>();

4.1 New Grammar

See section 8.3 of the Java Language Specification for FieldDeclaration, VariableInitializer,
and VariableDeclaratorId. See section 14.4 for LocalVariableDeclaration, section 8.3.1 for

22

FieldModifiers, and section 8.4.1 for VariableModifiers. Note that just as it is semantically
illegal for any modifier to appear twice, the final keyword cannot appear both as a modifier
and as an InferredType.

FieldDeclaration ::= LimeInferredFieldDeclaration
LocalVariableDeclaration ::= LimeInferredVariableDeclaration
LimeInferredFieldDeclaration ::= FieldModifiersopt InferredType FullDeclarator
LimeInferredVariableDeclaration ::= VariableModifiersopt InferredType FullDeclarator
InferredType ::= ’var’ | ’final’
FullDeclarator ::= VariableDeclaratorId ’=’ VariableInitializer

23

Chapter 5

User-defined Operators

Lime allows programmers to define special meanings of certain standard lexical symbols by
defining their own operations which override the automatically defined ones (often making
such operations legal on types that would not otherwise permit them). For instance, we can
define a unary complement operator for bit:

public bit ˜ this { return this == one ? zero : one; }
A binary operator could be similarly defined. For instance, the operator & for bit can be

defined as follows:

public bit this & (bit that) { return this == one && that == one; }
The unary operators that can be user-defined are

+++ --- ! ~ - +

The operators +++ and −−− are new prefix operators in Lime, discussed in section 6.9.
The infix operators that can be user-defined are

> >= < <= && || + - * / & | ^ % << >> >>> ::

The operator “::” is the “range” operator (new with Lime) and is explained in section 8.
Note that the equality operators (“==” and “!=”) may not be redefined in Lime. Value

types (see next section) have compiler-generated equality operators that check for recursive
value equality. The .equals() method should still be used when comparing for conceptual
rather than literal equality (for instance, to check if two sets with different representations
denote the same set of elements).

Lime also permits the array indexing operator [] to be redefined both for access (when
not the target of an assignment) and for setting (when an indexed entity is the target of an
assignment). For example,

public bit this [bitindex index] { return bitstore.get(index); }
public bit this [bitindex index] (bit newval) {

bitstore.put(index, newval);
return newval;

}

24

The semantics of all user-defined operators are very much those of the method calls that
they resemble by virtue of having both formal parameters and a method body. Whenever
one of the redefinable operators is encountered, the compiler first identifies the receiver. This
is the sole operand of a unary operator, the left-hand operand of an infix operator, or the
expression preceding the square brackets for an array operation. If the type of this expression
defines a “method” for the operator using the syntax just described, then that method is
assumed. The implicit arguments to that method are: none in the case of a unary operator,
the right-hand operand in the case of an infix operator, the index in the case of an array
access, and both the index and the new value in the case of an array store operation. The
types of these must agree with the method declaration using Java’s standard algorithm for
type inference and type resolution for method call, else a type error is indicated.

Lime does not check the implementations of user-defined operators to ensure that they
meet naive semantic expectations (thus, one could define a − operator that adds and a +
operator that subtracts). The compiler does not even check the return type, so, for example,
one could define a + operator with a void return. However, when user-defined operators
are employed in interfaces (e.g. as discussed in section 6.9) the contract will generally
imply a semantics for the operators that is consistent with such expectations. The package
lime.lang.tests contains testing harnesses that perform randomized testing to ensure that an
implementation of an interface meets its contract, and includes tests for most of the standard
interfaces in lime.lang and lime.util (see Section 21). Any implementation of those interfaces
should pass the corresponding test in lime.lang.tests.

In defining the rules for values (see section 6), the index-set operator is assumed to be
mutating and all others are assumed to be non-mutating.

Formal arguments of user-defined operators may not use varargs (since operators are
explicitly unary or binary, it does not make sense for the declaration to specify a variable
number of arguments).

5.1 Compound Operators

The definition of an operator implicitly defines the corresponding compound operator. For
instance, by defining the “+” operator:

value class foo {
int val;
public this + (foo that) { return new foo(this.val+that.val); }

}

the “+=” operator is also implicitly defined, so that it can be used as follows:

foo f(foo x, foo y) {
x += y; // same as ”x = x+y”
return x;

}

25

Note that the “+=” operator itself may not be defined by the programmer; its meaning
is always defined in terms of the underlying operator.

In addition, the pre- and post-increment/decrement operators (eg x++) are implicitly
defined by the definition of the “+++” and “−−−” operators, respectively.

Because Lime does not check the return types of user-defined operators, it is possible that
a visually reasonable use of the compound version will be found to be illegal. For example,
if + is defined for some type T such that its return type is inconsistent with assignment to
T, then any use of the += operator with a left-hand side of type T will produce a type error
related to the = part of the compound, even though the + part is correct.

5.2 Method-like Syntax

User-defined operators can be invoked using a method-like syntax, in which case the name
of the method is simply the operator token. For instance

foo f2(foo a, foo b) {
foo c = a.+(b) // same as ”foo c = a+b”
return c.+++() // same as ”return +++c”

Note that since compound operators are not themselves methods, there is no syntax for
invoking them as method calls.

One important motivation for the alternative syntax is that it allows you to invoke a
superclass’s implementation, which would not otherwise be possible. However, it is not
limited to that use.

super.+(b)
super.+++()

5.3 Java Compatibility

Instances of classes whose declarations include user-defined operators may be passed to
code that was not compiled with a Lime compiler. However, the user-defined operators are
invisible to Java code. In fact, a Lime implementation is likely to turn these operators into
ordinary methods that might be visible in, for example, a class file inspection utility.

However, even if invoking these internally-generated methods from Java code happens to
work, it is not an intended feature of the language, and the internal names are subject to
change in the future.

5.4 New Grammar

See section 8.4 of the Java Language Specification for MethodHeader. See section 15.12 for
MethodInvocation.

26

MethodHeader ::= LimeOperatorHeader
MethodInvocation ::= LimeOperatorMethodInvocation
LimeOperatorHeader ::= MethodModifiersopt Type LimeOperatorDeclarator
LimeOperatorDeclarator ::= LimeUnaryOpDeclarator
LimeOperatorDeclarator ::= LimeBinaryOpDeclarator
LimeOperatorDeclarator ::= LimeIndexGetDeclarator
LimeOperatorDeclarator ::= LimeIndexSetDeclarator
LimeUnaryOpDeclarator ::= LimeUnaryOp ’this’
LimeBinaryOpDeclarator ::= ’this’ LimeBinaryOp ’(’ FormalParameter ’)’
LimeIndexGetDeclarator ::= ’this’ ’[’ FormalParameter ’]’
LimeIndexSetDeclarator ::= ’this’ ’[’ FormalParameter ’]’ ’(’ FormalParameter ’)’
LimeUnaryOp ::= ’+++’ | ’---’ | ’!’ | ’ ’ | ’-’ | ’+’
LimeBinaryOp ::= ’>’ | ’>=’ | ’<’ | ’<=’ | ’&&’ | ’||’ | ’+’
LimeBinaryOp ::= ’-’ | ’*’ | ’/’ | ’&’ | ’|’ | ’’̂ | ’%’ | ’<<’
LimeBinaryOp ::= ’>>’ | ’>>>’ | ’::’
LimeOperatorMethodInvocation::= OpReceiver ’.’ LimeOperator ’(’ ArgumentListopt ’)’
OpReceiver ::= Name
OpReceiver ::= ’super’
OpReceiver ::= Primary
LimeOperator ::= LimeUnaryOp
LimeOperator ::= LimeBinaryOp

27

Chapter 6

Values

Lime is designed with two goals in mind: Programmers should be able to program with
high-level OO features and abstractions; These high-level programs should be amenable to
bit-level analysis and should expose parallelism. To achieve these goals, Lime extends Java
with value types and bounded arrays (arrays indexed by value types that have index-like
behavior and limited range). In this section, we introduce value types. Subsequent sections
introduce ordinal types and value enums, which are special cases of value types. Still later
we consider bounded arrays. In discussing these features we will demonstrate how they
can be used by the programmer. We will also highlight their implications for the compiler,
particularly with respect to efficient synthesis to an FPGA.

Lime’s value types share many properties with those of Kava [2]. However, they have
simpler type rules and support generics, allowing them to be used to create convenient
general-purpose class libraries.

6.1 Value Classes

A value class is a class whose instance fields are all implicitly final, and are themselves of
value or primitive type. For instance:

value class complex {
public double real;
public double imag;
public complex(double r, double i) { real = r; imag = i; }
public complex this + (complex that) {

return new complex(this.real+that.real, this.imag+that.imag);
}

}

Instance methods of value classes are by default local (See Section 14), meaning that
they can not access mutable static fields of their own or any other type. However, it is
possible to override this default.

28

Value classes may have static fields. The static fields are not restricted to be values, nor
are they implicitly final. They behave in the same manner as static fields of mutable classes.

In addition to being immutable, value types are different from mutable types in the
following ways:

� they can not be null;

� synchronization operations may not be applied (ie., value types are truly stateless)

� they may not define a finalize() method;

� the hashCode() operation depends solely on the value of its fields;

� the == and != operators compare their types and the values of their fields, rather
than object identity; and

� they are not allowed to provide an implementation of the index-set operator, even if
that implementation is non-mutating.

Synchronization on a value is prohibited statically, unless the value is stored in a variable
of Object type (or universal type, as explained in sections 6.2 and 6.5) through upcasting.
In that case, synchronization causes an exception. Compilation of == and != operators are
given value semantics or non-value semantics based on static types, except when the type of
either operand is universal or Object, in which case different logic is selected according to
the dynamic type.

These extra properties, along with immutability, cause value types to lose their reference-
like behavior (even though they nominally fit into the Java object type hierarchy). It is not
semantically visible whether the assignment of a value produces a reference or a copy.

6.2 Value versus Non-Value Types

The defining characteristic of value types is that they are immutable. An object of a value
type, once created, never changes. Lime depends on the immutability of values in funda-
mental ways and so its type system must enforce the rule that no expression whose static
type is a value type can have a runtime type that is not a value type. To enforce this rule,
Lime must prohibit any non-value type from having a value supertype.

The opposite situation (a static non-value type with a runtime value type) is safe as
long as the compiler inserts sufficient runtime checks to ensure that value semantics are
preserved. An effective implementation of Lime must minimize the situations where such
checks are needed and so the type system is organized to discourage value types from having
non-value supertypes. On the other hand, prohibiting value types with non-value supertypes
would compromise both expressivity and interoperability with Java. To achieve a balance
between these goals, types are divided into three categories.

29

1. The value types include classes, enums, and interfaces that are modified by the value
keyword. Value types are always immutable.

2. The universal types include interfaces and classes modified by the universal keyword.
There are no universal enum classes. Universal types represent objects that are not
themselves values but that are allowed to have value (and non-value) subtypes. The
type java.lang.Object is a universal type.

3. The ordinary reference types include classes, enums, and interfaces that are not mod-
ified by either the universal or value keywords, with the exception of java.lang.Object,
which is implicitly universal.

The interface lime.lang.Value forms the root of the subhierarchy of value types. The
keyword value on an interface implies extends Value and the keyword value on a class or
enum implies implements Value. Specifying these relationships explicitly is not an error but
is not necessary.

As in Java, all interfaces (including value and universal ones) have Object as their implicit
superclass. A universal type can have only universal supertypes. A value type can have
only value and universal supertypes. An ordinary reference type can have only ordinary
reference and universal supertypes.

The previous rules concern inheritance alone and should not be interpreted as meaning
that other forms of interoperation between values and non-values are prohibited. Ordinary
reference types may have fields of value type, and methods that accept and/or return value
types. Value types may not have instance fields of non-value type, but they may have
methods that accept and/or return non-value types. This is safe because of the checked
property that all value fields are final (see section 6.4). Value types may have static fields
of non-value type under certain restrictions (discussed in section 14).

The type parameters of generic types, whether universal, value, or ordinary, may be any
type, as long as the usage of those type parameters within the generic type’s definition does
not cause other rules to be violated.

The elements of an array are conceptually just like instance fields for the purpose of these
rules. Therefore the array v[], where v is a value type, is not itself a value type; rather, it
is an ordinary reference type whose members are values. Lime has value (ie. immutable)
arrays (introduced in section 12) but they require special syntax. A value array must have
value elements.

In order to prevent value members of Lime classes from becoming null when such classes
are passed to Java, some special rules prohibit the use of value types with Java generic types
(use of value types with Lime generic types is generally fine; see section 2 for details).

1. A Java generic type may not be instantiated with a value type.

2. A Java generic type may only be instantiated with a Lime type variable when the
bounds of that type variable preclude the possibility of substitution by any value type.

Thus, if complex is a value type and T is an unbounded type variable (substitutable by
any type at all), the following are illegal and flagged by the compiler.

30

java.util.List<complex> // illegal
java.util.list<T> // illegal

On the other hand, if S is a type variable declared as S extends java.util.Map, then the
following is allowed.

java.util.list<S> // OK; S can never be a value

Concrete universal types (not type variables) are also fine (including java.lang.Object).

java.util.list<Object> // OK

Values can then be stored in such a list, because, when members are subsequently ac-
cessed from the list, they must be cast back to their original value type, which will cause a
ClassCastException if the element is null.

6.3 Initialization of Values

It has been mentioned that a value type cannot be null. This gives rise to some issues when
creating either fields of value type or local variables of value type.

It is required that all value classes except ordinals (section 9) and value enums (sec-
tion 10) shall have a default (zero-argument) constructor whose visibility is at least that of
the defining class. Lime will generate such a constructor by default if the class lacks one,
even if the class has other non-default constructors. However, if the class declares a default
constructor with insufficient visibility, an error is indicated.

A field of value type that lacks an explicit initialization is initialized by code generated
by the compiler. The initialization code executes the default constructor of the value class.
The ordinals and value enums are discussed in their own chapters.

Because the initialization of fields of value type is accomplished by construction, it follows
that any field of abstract value type (that is, whose type is a value interface or abstract value
class) must have an explicit initialization (otherwise, the compiler will not be able to initialize
the field). The explicit initialization must instantiate some concrete value type that is legal
for assignment to the field.

Local variables in Java are not initialized by default and are subject to the definite
assignment rule. Lime does not change this. Initialization of a local variable of value type
is straightforward, however, given the default constructor:

fooValue x = new fooValue();

Due to the semantics of values, it is invisible whether new in this case really produces a
new instance or not; the keyword is used to indicate a construction and not necessarily an
allocation.

6.4 Type-checking Value Types

In order to ensure that the objects of value types are truly immutable, we must check
certain additional properties for value types, in addition to the the rule that they may not

31

have ordinary reference supertypes.
Each instance field of a value type must be final, and must be of a value type. The

keyword final is assumed in the definition of value types and is inserted by the Lime compiler.
Compile-time checks make sure that uninitialized final fields of values are never observed
outside the innermost constructor that is responsible for initializing those fields.

To enable compile time checking of the safe initialization of final fields, Lime requires the
following.

1. A safe constructor subroutine is defined as a private or final method that does not
leak this.

2. To leak this means any of the following

(a) to store this in any field

(b) to pass this explicitly to any method

(c) to invoke an instance method of the object (implicitly passing this) when that
method is not a safe constructor subroutine.

3. The innermost constructor of a final value class must not leak this before initializing
all final fields.

4. No constructor of a non-final value class may leak this at all (allowing such leakage
would require a subclass to leak this illegally when making the required super con-
structor call, which would no longer be a safe constructor subroutine).

5. The value of any blank final field prior to its first assignment in an innermost construc-
tor is always the default value of the field. For ordinary reference fields, this is null.
For value fields, this is the value produced by the default constructor of that type as
described in section 6.3.

These rules are stricter than Java’s standard rules (which merely say that the innermost
constructor cannot return without initializing the final fields). In particular, these rules
preclude the definition of recursive value types with cyclic instances.

Finally, methods finalize(), notify(), and notifyAll() can never be called on objects of value
types. Objects of value types have no storage identity, thus these methods do not make
sense for value objects.

6.5 Universal Classes and Interfaces

As previously discussed, when it is desirable to define an interface that could be implemented
by either an immutable or a mutable object, the universal modifier is used:

32

public universal interface Gettable<T> {
T get();

}

When implementing functionality that will be shared by value and reference classes, the
universal modifier is applied to a class definition:

public universal abstract class Sized {
protected int size;
public Sized(int size) { this.size = size; }
public int size() { return size; }

}

Universal classes are often abstract but this is not a hard requirement. They may only have
fields that would be legal in a value, and such fields are implicitly final, just as in a value.
Note that the fields of a universal class must be value types, not just universal.

On the other hand, universal classes have referential identity, like ordinary reference
types, and expressions of universal type may be null.

Like values, universal classes may not define synchronized methods or use the synchronized
statement in any method, nor may they have a finalize method. The java.lang.Object methods
that already violate this principle (e.g. wait) are screened dynamically.

In addition to Object, a number of Java interfaces are considered a priori to be universal
types. The pH tool (section 20.4) should be run on a given Java class library implementation
to be sure that the listed types do not have non-universal supertypes. It is easy to establish
this by inspection as well.

// java.lang
Object
CharSequence
Appendable
Cloneable
Readable
Runnable

// java.util
RandomAccess
Formattable

// java.io
Serializable
Closeable
DataInput
java.io.Externalizable
Flushable
ObjectInput

33

ObjectInputValidation

// java.net
CookiePolicy
FileNameMap

// java.security
Guard
Key
PrivateKey
PublicKey

// java.util.logging
Filter

// java.util.regex
MatchResult

6.6 Generated methods

A value class will have certain standard methods generated for it to provide behavior con-
sistent with value semantics. In no case, however, is a method generated if the method is
explicitly coded, either in the class itself or a superclass (other than Object, whose methods
are generally unsuitable for use in values).

If no equals() or hashCode() method has been explicitly coded, an equals() method is
generated consistent with the behavior of the == operator for values. A hashCode() method
is generated consistent with equals() and based only on the contents of the method. If the
compiler finds that one of these two methods has been provided but the other remains to
be generated, it will generate only the method that wasn’t provided but will issue a warning
that consistency of the result is not guaranteed.

If no toString() method (or tostring(), as described in section 11) has been explicitly
coded, then toString() and tostring are generated to produce a result similar in appearance
to the default toString() in java.lang.Object but without using object identity in the result
(all values with the same type and contents will have the same string representation).

The methods generated for value types are always local (see section 14).
No visible methods are generated for universal classes, but the fields of such classes

participate correctly in the semantics of any value subclasses that inherit from such classes;
to support this, the compiler may generate invisible methods in the universal classes.

34

6.7 Special Rules for Assignment of Null

To enforce the invariant that no value may ever be null, Lime requires some care in the use of
the null literal in any “assignment” context (this includes explicit assignment, initialization
of fields and variables, implicit assignment when passing an argument to a method, and
implicit assignment when returning a result from a method).

If the static type to which assignment is occuring is a value type, the assignment is illegal.
If the assignment is to an ordinary reference type, the assignment is legal.

If the assignment is to a universal type, the legality depends on whether the type is
explicit or is a type variable. If the type is explicit, the assignment is legal. However, if the
type is a type variable, the assignment is illegal. Such assignments require an explicit cast.
This is required since the type variable may later be instantiated with a value type.

class Foo<T> {
T badget() { return null; } // illegal
T goodget() { return (T) null; } // ok

}

The badget example must be prohibited because the type variable T (whose upper
bound is the universal type Object) can be instantiated with a value type, for which as-
signment of null is illegal. The goodget example is allowed since the cast to T will produce
a ClassCastException at runtime if the type of T is a value type.

6.8 Next and Previous Operators for Values

To make it easier to iterate with values and to support ranges and ordinals, Lime provides
the prefix operators −−− (“previous”) which returns its numeric operand minus 1, and
+++ (“next”) which returns its numeric operand plus 1. These operators differ from ++
and −− in that they exist only in prefix form and do not imply any mutating side-effect.
The next and previous operators may be given user-defined implementations in any class,
while the Java pre- and post- increment and decrement operators may not. However, for
any type that implements next and previous, the Lime compiler will accept ++ and −− in
either position, will use +++ or −−− to obtain the correct value, and apply the correct
mutating side-effect on a variable or indexed expression.

6.9 The Top of the Value Type Hierarchy

A number of useful value interfaces are defined at the top of the value type hierarchy. Lime
language features make use of these in various ways as will be discussed in individual sections
of this manual.

public universal interface Glocal {
// Explained later

35

}
public universal interface Local extends Glocal {

// Explained later
}
public value interface Value extends Local {

// No visible methods but value behavior is implied
}
public value interface comparable<T extends Value> extends Value {

boolean this < (T that);
boolean this <= (T that);
boolean this >= (T that);
boolean this > (T that);
int compareTo(T that);

}
public value interface dense<T extends dense<T>> extends comparable<T> {

T this +++;
T this −−−;

}
public value interface bounded<T extends bounded<T>> extends dense<T> {

public T this + (T that);
public T this − (T that);
public int ordinal();
public T valueOf(int from);

}
public abstract value class ordinal<T extends ordinal<T>> implements bounded<T> {

// No new methods but all ordinal types extend this
}
public value interface numeric<T extends numeric<T>> extends comparable<T> {

T − this;
T this − (T that);
T + this;
T this + (T that);
T +++ this;
T −−− this;
T this * (T that);
T this / (T that);
T this % (T that);

}
public universal interface PseudoRing<T extends PseudoRing<T>> {

T this & (T that);
T this | (T that);
T this ˆ (T that);

36

}
public value interface logical<T extends logical<T>> extends PseudoRing<T> {

T ˜ this;
}
public value interface integral<T extends integral<T>>

extends numeric<T>, dense<T>, logical<T>
{

T this << (T that);
T this >> (T that);
T this >>> (T that);

}

Operators, rather than named methods, are used in the definitions of many of these types
to ease the integration of user-defined value types with primitive types (see section 6.10).

The Glocal and Local interfaces are explained in section 14.5.
The comparable interface is the value version of Comparable. Its operations are assumed

to be implemented consistent with some order. Note that only the inequalities must be
implemented by an implementing type, since the compiler gives all values default semantics
for == and !=.

The dense interface adds next and previous operations which are assumed to be imple-
mented such that there are no values of the type between x and +++x or between x and
−−−x.

The bounded type captures the ability of a type to be used as the indexing and bounding
type of a bounded array (see section 12) and also in some other contexts (e.g. abbreviated
range syntax, explained in section 8). It is sufficiently important that it is discussed in a
section by itself (see section 7). The ordinal type is special to the ordinal types (see section 9).

The numeric and integral types cover the remaining numeric operators. Those operators
that are typical only of integral types are segregated in a subclass so that, for example,
floating point numbers would not have to implement them.

6.10 The Role of the Primitive Types

Lime considers that primitive types are value types. However, this leaves the question of
exactly where they fit in the hierarchy of value types descended from lime.lang.Value or
whether they fit there at all. For compatibility with Java, the names of the primitive types
remain as keywords, and the specific semantics of the primitives (e.g. numeric promotion)
are unchanged. They are still base types, and convert to and from reference types only
in circumscribed ways (e.g. autoboxing, plus interoperation between int and the bounded
types, as discussed below).

However, in order to participate as type arguments of parameterized types, the primitive
types act as if they fit into the standard value type hierarchy as follows.

37

class boolean implements Value {}
class float implements numeric {}
class double implements numeric {}
class byte implements integral {}
class short implements integral {}
class char implements integral, bounded {}
class int implements integral {}
class long implements integral {}

As the interfaces in question are mostly defined in terms of operators and not named
methods, this “metaphorical inheritance” should be easy to maintain when writing generic
types that might be parameterized by primitive types.

There is an implicit conversion between all types that implement bounded and the int
type. Lime also supports an explicit cast from int to any bounded type (the cast uses the
bounded type’s valueOf method to accomplish this). Note that this is not saying that the
bounded types are subtypes of int, only that they are interconvertable.

The pseudo-hierarchy shown above is also used to decide the eligibility of primitive types
to be used in certain other constructs new to Lime where types of particular capabilities are
required (see, for example, “ranges” in section 8).

Currently, of the primitive types, only char implements bounded because only char has
a natural first and last that corresponds to its MIN VALUE and MAX VALUE. In keeping
with the reality that primitive types only inherit value interfaces in a metaphorical sense,
the expressions char.first, char.last and char.ordinal() are not legal.

6.11 Java Compatibility

The ability to pass Lime value types to Java methods and constructors is gated by the ability
of Java to express matching types in the declarations of those methods and constructors.
Primitive types (which, conceptually, are values) can of course be passed. Any value type
can be passed by casting it to Object, since that is also a Java type. Bounded types can be
passed by casting them to int. Note also the restriction against instantiating Java generic
types with value types (section 6.2).

6.12 New Grammar

See section 9.1.1 of the Java Language Specification for InterfaceModifier and section 8.1.1
for ClassModifier.

ClassModifier ::= LimeValue
InterfaceModifier ::= LimeValue
InterfaceModifier ::= ’universal’
LimeValue ::= ’value’

38

See section 15.15 of the Java Language Specification for UnaryExpression.

UnaryExpression ::= LimeNextExpression
UnaryExpression ::= LimePreviousExpression
LimeNextExpression ::= ’+++’ UnaryExpression
LimePreviousExpression ::= ’---’ UnaryExpression

39

Chapter 7

Bounded Types

Lime defines a family of “bounded types”, representing constrained integer ranges (with,
perhaps, additional behaviors as well). These types are useful in Lime because they can be
used to iterate over or index the bounded arrays (described in section 12).

A bounded type is indicated when a type implements the bounded interface (see sec-
tion 6.9), directly or indirectly. All bounded types must adhere to additional rules in order
to achieve their expected semantics.

There is an implicit conversion from all bounded types to int and it is always legal to
explicitly cast int to any bounded type. The behavior of the implicit conversion to int is
defined by the bounded type’s ordinal method and the behavior of an explicit cast from int
to a bounded type is defined by the behavior of the bounded type’s valueOf method, applied
to any instance.

For any bounded type X, the following invariants must hold.

new X().ordinal() == 0;
X x; x.valueOf(0) == new X();
X x; X y; int n; x.valueOf(n) == y.valueOf(n);
X x; x.valueOf(x.ordinal()) == x;

That is, the int equivalent of the default instance is 0, the result valueOf method is
sensitive only to its argument and not to its receiving instance, and the valueOf and ordinal
methods are inverses for those int values that ordinal can produce.

Every non-abstract bounded type must additionally define a static final int field whose
name is size. This field must capture the number of distinct instances that the bounded
type can have (two instances a and b are distinct iff a != b; recall that value comparison is
field-wise and does not compare object identities).

The size field of a bounded type must be a compile-time constant as defined in section
15.28 of the Java Language Specification (3rd edition).

The valueOf operator of a bounded type must accept all int arguments and produce a
range-corrected result. That is, for any X x and int n, int r = x.valueOf(n).ordinal() is defined
so that r >= 0 && r < size. For non-negative n, r == n % size and for negative n, r == n
% size + size;

40

The operators +, −, +++, −−− must then be defined so that they wrap at size and at
zero. More precisely, the following invariants hold.

X x; X y; /* throughout the following */
x + y == x.valueOf(x.ordinal() + y.ordinal());
x − y == x.valueOf(x.ordinal() − y.ordinal());
+++x == x.valueOf(x.ordinal() + 1);
−−−y == x.valueOf(x.ordinal() − 1);

The invariants listed above are not statically checkable for all possible ways of imple-
menting the bounded interface. However, the compiler will, in practice, find many errors
in simple cases and will be able to prove, in simple cases, that the invariants are met. For
ambiguous cases, the compiler may issue a suppressable warning, which places the ultimate
responsibility for checking on the programmer.

If X is a non-abstract bounded type then the following special selectors, which superficially
resemble static fields, are defined, as follows.

� X.first provides the instance new X().

� X.size provides the value of the size field of X. It also has another use in certain contexts,
discussed in section 9.

� X.last provides the instance X.first.valueOf(size−1).

� X.range provides the range X.first::X.last.

The special selectors have the property of being virtually dispatched. So, if a type
variable N, in a Lime generic type, becomes bound to the concrete bounded type X in some
instantiation of the generic type, then the N.size will access the field X.size, and the other
special selectors will be resolved according to the type X. Note that if these were real fields,
this virtual dispatch would not happen (see section 2.6).

The special selector expression N.size, where N is a type variable, gives an accurate
answer at runtime but is not considered a constant (since it depends on a variable, albeit a
type variable). On the other hand, X.size, where X is a concrete bounded type, is a normal
compile-time constant expression.

41

Chapter 8

Ranges

Lime provides programmers an easy way to iterate over subranges of many kinds of values
(specifically, those that implement dense). This is done via the binary operator, “::”. Given
the expression x :: y, if the type of x provides an implementation of :: (see section 5), it is
used. Otherwise, the result will be an object of lime.lang.range<T>. The types of both x
and y must implement dense, else a type error is indicated. The type T is chosen as the least
upper bound type of x and y (ie dense or a subtype thereof).

range<T> implements the lime.lang.Iteratable<T> interface, which is Lime’s value-friendly
variant of Java’s java.lang.Iterable. Its name is distinct because both java.lang.* and lime.lang
.* are implicitly imported and sharing a simple name would cause confusion. An Iteratable<T
> type has an iterator() method that returns the value-friendly lime.util.Iterator<T> instead
of the Java equivalent. In Lime, a “for-each” style loop (introduced in Java 5) can use either
kind of Iterator. So, a range can be used as the “collection” in a for-each style loop.

For example, the following code defines a loop over the range of values greater than or
equal to bit.zero, and less than or equal to bit.one:

for (bit b : bit.zero :: bit.one) { System.out.println(b); }

When a range<T> is created with the :: operator, it is assumed to be an ascending range.
Thus “0::5” is an ascending range from 0 to 5 (inclusive), but “5::0” is an empty range. The
reverse() method is used to produce a descending range, as in “(0::5).reverse()”.

In Lime programs, programmers often need to iterate over the entire range of possible
values of a type. A convenient shorthand is provided for this purpose, provided the type in
question implements bounded. For example, for (bit b){...} is equivalent to for (bit b : bit.
first :: bit.last {...}. Such a default range is always an ascending one.

Note that all of the primitive integral types implement dense and char implements
bounded, so they can participate in this new syntax.

8.1 New Grammar

See section 15.17 of the Java Language Specification for the context of the following.

42

MultiplicativeExpression ::= LimeRange
LimeRange ::= MultiplicativeExpression ’::’ UnaryExpression

See section 14.14.2 of the Java Language Specification for the context of the following.

EnhancedForStatement ::= LimeForStatement
LimeForStatement ::= ’for’ ’(’ Type LimeForVariable ’)’ Statement
LimeForVariable ::= IDENTIFIER

43

Chapter 9

Ordinals

So far, the bounded types are limited to the primitive types plus types that a programmer
might define. Lime provides a way to generate arbitrary bounded types whose size is any
value from 1 to Integer.MAX VALUE using the type constructor enum<N>. N must be a
compile time constant.

The parameter expresses the number of elements (so last is N − 1). For instance,

enum<4> a;
final int size = 7 * (int) Math.PI;
enum<size> b;

All ordinal types implement the ordinal abstract class, which is a specialization of the
bounded interface. User-written code is not permitted to extend the ordinal class, which can
then be used in the declaration of type variables when an ordinal type is required.

The values of an ordinal type employ the ordinal literals which (in the most general
syntax) take the form InS, where I is a non-negative integer in decimal notation giving the
ordinal() of the ordinal and S is a positive integer in decimal notation giving the size of the
ordinal type. So, for enum<4> the literal values are 0n4, 1n4, 2n4, and 3n4. Note that 4n4
is an illegal literal, even though the valueOf method of enum<4> would accept the integer
4 and produce 0n4.

The size portion of an ordinal literal can be omitted, implying a size one greater than
the value. Thus, 2n means the same as 2n3. Due to the widening conversions accepted by
the ordinal types, it is usually safe (although arguably unclear in some contexts) to omit the
size suffix. That is, 2n in a context that expects 2n4 will be implicitly widened as described
below.

In addition, assignments and initializations of ordinal-typed fields and variables permit
an analog of the narrowing primitive conversion defined in the Java Language Specification
(section 5.2). Just as you are allowed to say

short x = 35;

even though 35 has int type, you are also allowed to say

enum<4> x = 3;

44

The requirement is that the right hand side must be a compile time constant expression
that is the range of the ordinal. This feature extends to array initializers.

There is a hierarchy of conversions between the ordinal types. If M < N then there
is an implicit widening conversion from enum<M> to enum<N> and enum<N> may be
explicitly cast to enum<M>. The semantics of these conversions are just a special case of
the semantics of conversions between all bounded types and int. The source type is first
made into an int by calling its ordinal method, then the result is converted to the target
type using valueOf. However, if the target ordinal is wider than the source ordinal this is
done without requiring any explicit cast. Note that requirements of the valueOf method of a
bounded type cause narrowing conversions between ordinals that are powers of two to retain
the low-order bits, just as with the integral primitive types.

Ordinals can also be converted to Object like any other type. In this case, they are boxed
immediately and not first converted to int and then autoboxed, so that when their type is
interrogated the original ordinal type is reported.

Ordinals can be used in for statements as range generators, just like any dense type (as
ordinals are also bounded, the compact for syntax is also available).

for (enum<4> i) x[i] = 666;
for (enum<4> i : 1::2) x[i] = 666;

Ordinal types are final, and do not allow user-defined methods or constructors.
Ordinal types participate in the value initialization convention described in section 6.3.

Fields are initialized to the first value of the ordinal (denoted by integer literal 0) and variables
can be initialized using either integer literals or first or last notation.

Since ordinal types implement bounded, the operators +++, −−−, + and −, as well as
all numeric comparison operators, are defined for them.

9.1 Shorthands for Ordinal Types.

When an ordinal is used as a type argument to a generic, the surrounding enum<> portion
can be dropped. So for instance, the following

unsigned<enum<32>> myNumber;

can be written

unsigned<32> myNumber;

When a qualified name ending in .size (e.g. N.size) is used as a type argument to a
generic, and the portion before .size denotes a bounded type, then, rather than interpreting
the dotted name as an expression (which would not be a compile-time constant if the N in
N.size were a type variable), Lime instead interprets N.size as the ordinal type whose size
is the same as the bounded type. This shorthand is useful when instantiating generic types
that expect ordinal type arguments, while using a type parameter that is constrained only
to be bounded. For instance, the following is allowed if N is a type variable constrained to
any bounded type.

45

unsigned<N.size> myNumber;

This second shorthand is specially useful when constructing generic types that use the
Lime bounded array types (described in section 12).

9.2 Java Compatibility

Although ordinal types don’t exist in Java, the implicit widening conversion to int means
that ordinals can be passed as int to Java methods and constructors, and methods that
return int can be preceded by an explicit cast for assignment to an ordinal variable. By
composition with other numeric promotion rules, ordinals will interoperate with all Java
numeric primitive types, either with or without an explicit cast.

9.3 New Grammar

See section 4.3 of the Java Language Specification for ClassOrInterfaceType.

ClassOrInterfaceType ::= LimeOrdinal
LimeOrdinal ::= ’enum’ ’<’ ConstantExpression ’>’

See section 4.5.1 of the Java Language Specification for ActualTypeArgument.

ActualTypeArgument ::= LimeAbbreviatedOrdinal
LimeAbbreviatedOrdinal ::= ConstantExpression

The ordinal literal is defined by a straightforward extension to the lexical grammar in
section 3.10 of the JLS.

OrdinalLiteral ::= Digits OrdinalTypeSuffix
OrdinalLiteral ::= Digits OrdinalTypeSuffix Digits
OrdinalTypeSuffix ::= ’n’
OrdinalTypeSuffix ::= ’N’

46

Chapter 10

Value Enums

A value enum behaves like an ordinal type in which each possible instance is given an explicit
name. However, the declaration mechanism is quite different and resembles the ordinary non-
value enum types of Java. In addition, the value enum types do not extend the ordinal class,
although they do implement the bounded interface.

The following is a user-defined representation of type bit, with two possible values, bit.
zero, and bit.one:

public value enum bit { zero, one; }

Recall that Java enums extend a particular generic class java.lang.Enum. In Lime, non-
value enums continue to do so. Value enums, on the other hand, extend lime.lang.valueEnum.
That class is itself a value class and implements bounded. As a consequence of implementing
bounded, a value enum has the expected special selectors first, last, size, and range.

There is an implicit conversion from any value enum to the ordinal type with the same
number of members. By extension, there is an implicit conversion to any ordinal type with
more members or to int. This is just a special case of the general rule that any bounded type
is interconvertable with int via its ordinal and valueOf methods. But, as with the ordinals, a
widening conversion from a value enum to an ordinal of equal or greater cardinality requires
no explicit cast even if conceptually it is mediated by int methods. There is no implicit
conversion between different value enum types, no matter what members they may have.
However, explicit casts between value enums are defined and behave as if the source type
was first cast to int and then to the target type.

As with Java enums, it is illegal for a value enum to have a superclass (or superenum)
although it may have superinterfaces (as long as they are value or universal). When a
value enum is cast to Object it is boxed directly and does not first convert to ordinal or int.

Unlike Java enums, a value enum cannot define constructors and gets only the con-
structors generated for it. It must not explicitly initialize its constants (thus, it cannot
implicitly subclass itself by specializing its one default constructor). All value enum types
are therefore implicily final (regular Java enums may be non-final if they add class bodies
in constant initialization, implicitly subclassing themselves). A value enum, like any value,
cannot contain mutable fields.

47

As with Java’s mutable enumeration classes, value enums can be used in switch state-
ments and as the return types of annotation methods.

10.1 Default Values

Fields of value enum type are implicitly initialized to the first value. Local variables can be
initialized using any of the enum’s named members, or first or last. For example, in the field
declaration bit b; variable b has the default value bit.zero.

10.2 Bit Literals

The predefined value enum type lime.lang.bit is given some additional syntactic sugar by
the Lime language in recognition of the importance of bits in hardware. In particular, the
bit literals 0b and 1b are recognized as equivalent to the standard enum syntax bit.zero and
bit.one.

10.3 Java Compatibility

The value enum types have an implicit widening conversion to int and an explicit narrowing
cast from int. Therefore they can be passed to Java code exactly as the ordinal types can.

10.4 New Grammar

The value keyword is covered in section 6.12. An enum in Java uses the ClassModifier

production just like a class.
The bit literal is obtained as a straightforward extension to the lexical grammar in section

3.10 of the Java Language Specification.

BitLiteral ::= Digit BitTypeSuffix
BitTypeSuffix ::= ’b’
BitTypeSuffix ::= ’B’

Note that a Digit includes digits besides 0 and 1 but only 0 and 1 are legal; other “bit
literals” are rejected by semantic analysis.

There are no other enum-specific grammar changes.

48

Chapter 11

Strings

Lime has its own native string class, lime.lang.string. It is very similar to Java’s native java
.lang.String class, but is an instance of Value, and can therefore be contained in other value
classes and passed between tasks (see Section 15).

Lime’s string class also has significant additional functionality. Lime strings support the
Iteratable, Indexable, and comparable interfaces, so the following are legal:

string s = ”foo”;
for (char c: s) { ... }
char f = s[0];
if (s < ”food fight”) { ... }

Lime strings also support data-parallel operations via the Collectable interface, as de-
scribed in Section 18.

Instead of Java’s toString() method, Lime programmers should generally implement a
tostring() method which returns type string.

11.1 Java Compatibility

Lime strings and Java Strings can be used interchangeably, in a manner exactly analogous
to the treatment of int and Integer in Java:

string ls = ”foo”;
String js = ls;
string ls2 = js;
String jn = null;
string ln = jn;

Note that this also means that the final statement will generate a run-time NullPointerException
, since Lime strings are not allowed to be null.

Concatenating a Lime string and a Java String always produces a Lime string.
Note however that string constants are still of type java.lang.String (in order to maintain

classfile compatibility). This is mostly invisible except that var str = ”foo” will cause str to

49

have the inferred type String instead of string.

11.1.1 ToString Conversion

Lime programs should generally define a tostring() method returning a string. For Java
compatibility, the compiler will automatically generate the following method when tostring()
is defined:

public final String toString() { return tostring().toString(); }

The generated method will have the same locality modifier (see Section 14) as the explicitly
defined tostring() method.

However, for compatibility, programmers may also choose to define a toString() method,
in which case the following method will be automatically generated:

public final string tostring() { return new string(toString()); }

Note that it is an error to define both tostring() and toString() methods in the same class.
Finally, tostring() is treated as though it is a method of Object: it may be invoked on

objects that lack a tostring() method, in which case (expr).tostring() is equivalent to new
string((expr).toString()).

11.1.2 Equality Relationships

Lime strings follow the standard rules for “==” equality of value classes: it is based on
content rather than identity. However, since String is a reference type, it will never be “==”
equal to a string. Thus:

(new string(”foo”) == new string(”foo”)) == true
(new string(”foo”) == new String(”foo”)) == false
(new String(”foo”) == new String(”foo”)) == false
(new String(”foo”) == new string(”foo”)) == false

On the other hand, string’s equals() method compares for content equality – but note that
String’s equals() method is unchanged. Thus:

(new string(”foo”).equals(new string(”foo”)) == true
(new string(”foo”).equals(new String(”foo”)) == true
(new String(”foo”).equals(new String(”foo”)) == true
(new String(”foo”).equals(new string(”foo”)) == false

In general, this should not affect programs unless string and String objects are, for example,
being used interchangeably as keys in a hash table where the key type is Object.

50

Chapter 12

Arrays

Arrays are a critical building block in Lime, as in many programming languages. In Lime,
array behavior is revised (compared to Java) with three goals in mind.

1. It must be possible to declare arrays that behave as values (are immutable and can’t
be null). It should already be obvious how to declare an array all of whose elements
are values, but that is not the same thing.

2. It must be possible to establish static bounds on the sizes of arrays in contexts where
that is important, so that data rates are statically known or the ArrayIndexOutOfBoundsException
is guaranteed not to happen. This is critical to synthesizing simple and efficient code
for execution in hardware.

3. Arrays in Lime must have behavior which meshes with other features, such as expanded
generics (section 2), collective operations (section 18), and ranges (section 8). In Lime,
arrays are also lime.lang.Iteratable types, making them more like collections.

To meet this goal, Lime provides two fundamental array types (value arrays and mu-
table arrays) and a static type distinction applying to either of these fundamental types
which expresses either dynamic bounds checking (in which ArrayIndexOutOfBoundsException
is possible) or static checking (in which the exception is precluded).

More precisely, consider the following.

int[] w; // A mutable unbounded array
int[[]] x; // An immutable unbounded array
int[4] y; // A mutable bounded array (only arrays of size 4 allowed)
int[[4]] z; // An immutable bounded array

As in Java, all arrays, once created, have a fixed size. Exploiting this fact allows us
to define the unbounded array types as abstract supertypes of the corresponding bounded
types. So, all of the following are accepted by the compiler and will also succeed at runtime.

51

int[] u;
int[4] b4 = new int[4];
int[5] b5 = new int[5];
u = b4;
u = b5;

The variable u is unbounded and will accept any array size. A cost of using u, however,
is that an indexing expression like u[i] might cause an exception depending on the actual size
of the array and value of i.

The variable b4 accepts only arrays of size 4. An indexing expression like b4[2] will be
accepted by the compiler and cannot cause any exception. On the other hand, the expression
b4[i] may be rejected by the compiler unless i is a constant expression known to be in range or
falls in the category of confined integer expressions discussed below. Any such expression ac-
cepted by the compiler will be guaranteed not to produce an ArrayIndexOutOfBoundsException
at runtime.

The following assignments would be illegal.

b4 = u; // illegal
b5 = u; // illegal
b5 = b4; // illegal
b4 = b5; // illegal as well

The compiler does not allow an array of unknown size or an array whose size is not the
same as the target to be assigned without a check. It should already be clear why b5 = b4 is
illegal, since it makes a later array bounds violation possible. We also make b4 = b5 illegal,
even though it is safe from the narrow perspective of bounds checking, because bounded
arrays allow for various size-sensitive optimizations that could fail unless the compiler can
count on the exact size being known.

The compiler will accept the following, but a ClassCastException might result if the actual
array has the wrong size.

u = new int[5];
b5 = (int[5]) u; // checked dynamically; ok
b4 = (int[4]) u; // throws ClassCastException

Note that bounded array types must have a positive size. That is, the following is illegal:

int[0] x; // illegal

Thus, while most unbounded arrays may be cast to a corresponding bounded type, this
is never true of zero-length arrays.

All the rules discussed up to now would apply equivalently if the double brackets “[[]]”
were used instead of single ones (that is, if all the arrays were value arrays instead of mutable
ones). However, the value arrays and mutable arrays are not interconvertable with each other,
either with or without a cast. Such conversions, when needed, are performed by constructors
as discussed in Section 12.5.

52

To achieve the best level of hardware synthesis and performance, Lime bounded arrays are
designed to avoid not only indexing exceptions but also ArrayStoreException. Consequently,
a mutable bounded array is not subject to covariant subtyping through its element type.
Thus, the following would be illegal.

Integer[] ui = new Integer[4];
Integer[4] bi4 = new Integer[4];
Number[4] bn4 = (Number[4]) ui; // rejected by compiler
bn4 = (Number[4]) bi4; // ditto

The other three array types accept covariant subtyping. For value arrays, such subtyping
is exception-free because storing into a value is already precluded statically. Covariant sub-
typing of mutable unbounded arrays is accepted, with the possibility of ArrayStoreException,
both because that’s how Java does it and because such arrays are already subject to other
runtime exceptions.

Arrays in Lime have the same size limit as in Java; the maximum size array that can be
created is one whose length is Integer.MAX VALUE.

Most generally, the construction of any dimension of an array type takes (between square
brackets) either a positive integer constant expression, or a type, which must be an ordinal
type.

That is, all three of the following are equivalent:

int[4] x;
int[enum<4>] x;
typedef e4 = enum<4>;
int[e4] x;

Also, if V is an in-scope type variable of ordinal type, then the following is also legal.

int[V] x;

In addition, due to the special shorthand described in section 9.1, if B is an in-scope type
variable of any bounded type, then the following is also legal.

int[B.size] x;

It is true that the exact size of the resulting type is unknown at the point of declaration
but the type is guaranteed to take on a definite size in each instantiation.

12.1 Range Indexing

In Lime, an array can be indexed by an int range, with a result that is another array. So,
for example, x[0::3] is a syntactically legal expression and it is semantically legal as well if x
is an unbounded array or a bounded array of size at least 4.

Lime also permits an array to be indexed by a bounded range (ie. range<? extends
bounded<?>>). The semantics are defined operationally as if a bounded range r is first

53

converted to r.start.ordinal()::r.end.ordinal() (which has the type range<int>) and then in-
dexing accordingly. The motivation for this feature is to achieve symmetry in how single
indexing works and how range indexing works in the light of the confined expression concept
described more fully in Section 12.4.

The result of indexing by a range is a bounded array if the following conditions are met.

1. The indexing expression is explicitly constructed in place with ::, not just an expression
whose type turns out to be range<int> or range<? extends bounded<?>>.

2. Both the start and the end of the range are compile-time constant expressions.

3. The range is an ascending one encompassing at least one element.

Otherwise, the result is an unbounded array.
Ordinal and bit constants are treated as if they were “compile-time constant” for the

purpose of this decision. This does not imply that they are compile-time constants in every
respect.

Range indexing is possible on the left of an assignment as well:

u4[0::1] = 0;
u4[0::1] = u5[2::3];

In that case, when the target array is bounded then the range selector of the target must
be within range, and length of the array being assigned must match the number of ele-
ments being assigned. Length errors are found (most generally) at runtime and indicated
by ArrayIndexOutOfBoundsException. When the right hand side is a bounded array and
the range expression on the left hand side is made up of constant expressions, yielding a
manifestly known length, the error will be indicated at compile-time.

12.2 Multidimensional Arrays

Lime array syntax extends to the multidimensional case, where the kind of array at each
dimension may be different. There are two special considerations.

1. value arrays (if any) must be innermost (this follows from the fact that values may not
contain non-values).

2. if there is more than one value array dimension, there is only one extra set of brackets
surrounding all of them.

In the following, x is a mutable unbounded array whose elements are mutable bounded
arrays of size 4. The elements of those arrays are, in turn, value arrays of size 4 whose
elements are unbounded value arrays of int.

int[] [4] [[4] []] x;

54

On the other hand, the following are illegal, y because it has value dimensions that are
not innermost and z because it does not use a single pair of “value braces” around all the
value dimensions.

int[] [[4] [4]] [] y; // wrong
int[] [4] [[4]] [[]] z; // wrong

Conversions between bounded and unbounded versions of multi-dimensional arrays in-
volve some issues that are initially counterintuitive but which can be understood in terms
of basic subtyping rules. First of all, casts and conversions involving just the outermost
dimension are always permitted at compile time, as they follow directly from the rules for
single-dimensioned arrays.

int[4][4] y = ...;
int[][4] x = y;
y = (int[4][4]) x;

The cast from x to y is checked exactly as in the single-dimensioned case. In contrast,
casts involving a change in an inner dimension are permitted or not according to whether
the encompassing array type does or doesn’t support covariant subtyping.

int[][4] w = ...;
int[4][4] y = ...;
int[4][] z = y; // error
int[][] xx = y; // error
xx = w; // allowed

The type int[4][] is a mutable bounded array, which, to avoid ArrayStoreException, sub-
types invariantly through its element type. The element type of this array is int[]; replace-
ment by the subtype int[4] is therefore not allowed. This replacement is would be performed
by the assignment of y to z (were it allowed) and would be implied (elementwise) in the
assignment of y to xx; therefore, those assignments are not permitted. If they were to be
permitted, subsequent assignment of a wrong length array to an element of the outer array
would either result in loss of type safety or would have to throw an ArrayStoreException.

The type int[][] is an unbounded array for which ArrayStoreException is expected; therefore
the assignment of w to xx is allowed; a subsequent store of an element array that isn’t of
length 4 would throw the exception.

If an explicit cast cannot possibly succeed, it is disallowed statically. Thus, an explicit
cast from int[][] to int[4][4] is disallowed statically on the grounds that the former type
cannot possibly contain any instance of the latter.

When two multi-dimensional arrays cannot be converted by assignment or casting, they
can always be converted (if actually conformable) by copy-construction (see Section 12.5

55

12.3 Java Arrays

It is infeasible to achieve the expanded semantics of Lime arrays while using the identical
representation to that used in Java, hence arrays (like generic types) are an area of tension
between the expressivity requirements of Lime and its Java compatibility requirements. This
requires Lime to make a type distinction between Java arrays and Lime arrays.

The tilde character (˜) is used to denote a Java array, similar to how it is used to denote
a Java generic type or method. That is, in the following, x is a Java (not Lime) array.

int˜[] x;

Since Java arrays are less reifiable than Lime arrays (see Section 2.1), their use in a Lime
program should be strictly limited to areas of a program that are interoperating intensively
with Java code.

The element type of a Java array may not be any value type other than the primitive
types.

String˜[] s1; // ok, String is not a value
string˜[] s2; // illegal, string is a value
string˜[][] s3; // ok, string[] is not a value
string˜[][[]] s4; // illegal, string[[]] is a value

The reason for the restriction is that Java does not understand values. If a Java array
could have a value element type and such an array was passed to a Java method, it would
match some supertype (e.g. string˜[] might match Object˜[]) and the Java method might
store null into it, which would violate Lime type safety.

The rule prohibiting values with Java arrays is similar to the rule in section 6.2 concerning
the instantiation of Java generics with value types. So, in addition to the illegal cases shown
above, the use of a Lime type variable as the element type of a Java array is immediately
flagged as illegal unless the type variable precludes substitution by any value type.

The Java array is not implicitly interconvertable or castable to any other kind of array.
However, a Lime array can be constructed (making a copy) from a Java array as discussed
in Section 12.5 and a Lime array can be converted to a legal Java array (also making a copy)
using the toJavaArray method described in Section 12.6.

12.4 Confined Integer and Range Expressions

To fully understand array indexing for Lime arrays, it is necessary to define a category of
confined expressions of int or range<?> type. Intuitively, such an expression is one whose
exact value may or may not be known statically but where it is statically known that the
value falls in a confined range. A constant expression is always confined but not vice versa.
For example, the conversion of any bounded type (constant or not) to int yields a confined
expression. Greater detail is provided in the following definition:

1. All compile-time constant expressions of integral type, implicitly or explicitly widened
or narrowed to int are confined expressions since their exact value is known.

56

2. Generalizing rule 1, any final variable or final field of integral type (not necessarily
static) explicitly initialized by a confined integer is considered to be a confined integer
at any use site, since its value cannot change. Note that this property does not extend
to blank final fields, even if they are everywhere initialized to a confined integer, since
determining their value statically is not always possible.

3. All expressions (constant or not) of a type that implements bounded (including ordinals,
value enums, and user-defined bounded types) yield a confined integer when converted
to int. Recall that any bounded type is implicitly converted to int as needed. The int
value yielded by converting any expression of type N extends bounded<N> is confined
to lie in the range 0::N.size−1.

4. Expressions whose terms are confined integer expressions (only, with no other fields,
variables, or function calls) combined by arithmetic operators are themselves confined
integer expressions.

5. Other integer-valued expression are not considered to be confined. No data flow is
considered in making this distinction. So, if x has ordinal type, then the int resulting
from the implicit conversion of x in y[x] is confined. Similarly, the final int f in the
sequence final int f = x; y[f] is confined. However, the non-final int u in the sequence
int u = x; y[u] is not confined even though the compiler could presumeably discover its
limited range of possible values.

The fact that an expression is confined does not make it legal to use as an index. The
upper and lower limit of the range to which it is confined must be in range for the type
it is indexing. Thus, with enum<8> x and int[6] y, the expression y[x] will be rejected by
the compiler even though the x is confined because its range includes 6 and 7, which are
illegal indices for int[6]. Note that the range of a confined expression can “widen” due to
arithmetic: the expression z[x*x*x*x] is illegal for indexing int[2000] z since the expression’s
upper limit is 2401.

There are also confined range expressions which are defined as follows.

1. If x and y are both confined integers (most generally these could be expressions, not
just simple names) then both x::y and y::x are confined ranges.

2. If p and q are both expressions of (any) bounded type, then both p::q and q::p are
confined ranges. The type of the range will be range where B is either p or q
depending on which has the greater size. As the semantics of indexing with this kind
of range is defined by converting each member from start to end to an int, the range
will function as a confined integer range for the purpose of bounds checking.

3. If a final variable or field of type range<int> or range<? extends bounded<?>> is
explicitly initialized with a confined expression, then the variable or field is considered
confined at any use site since it cannot change and ranges are values that cannot
change.

57

12.5 Array Creation

Some examples of array creation have already been shown. Lime array creations mimic their
Java counterparts. That is, either a size is given as an int expression (expressed perhaps as
an expression of some other type implicitly convertable to int) or the size is implied by the
number of members in an array initializer (one or the other but not both). For example, the
following.

int[] u = new int[i];
int[4] b = new int[] {1,2,3,4};
int[[4]] vb = new int[[4]];

Types may also appear in array creation expressions, just as they can in declarations;
they must be ordinal types.

typedef e4 = enum<4>;
int[[e4]] vb = new int[[e4]];

Similarly, type variables that are defined as being of ordinal type (or type variables of
any bounded type followed by .size) can be used in creation expressions.

Whether the created array is a value or not is determined by the extra brackets. Whether
it is bounded or not depends on the characteristics of the size expression.

� If the size expression is a reference to an ordinal type, the result is bounded.

� If the size expression is a compile-time constant integer expression, or a compile-time
constant bounded expression that is implicitly converted to int, and the result is pos-
itive, then the result is a bounded array.

� If there is no size expression but instead an array initializer (whose size is manifest) is
employed, and that initializer has at least one element, the result is a bounded array.

� Otherwise (including all zero-length cases) the result is an unbounded array.

A confined integer expression is not sufficient here since the exact size must be known, not
just a range of sizes.

These forms extend to multi-dimensional arrays, as in Java. As in Java, the use of a
multi-dimensional array form leads to all dimensions of the array being initialized, with the
leaves being initialized to the default value for the leaf type.

Lime arrays accept another form of constructor, in which forms like int[[4]] are interpreted
as types rather than expressions and are followed by constructor arguments, mimicking object
constructors. Consider these examples.

int[[4]] vb = ...;
int[4] b = ...;
int˜[] ju = ...;

int[4] mvb = new int[4](vb); /* constructs mutable array from value array */

58

int[[4]] vmb = new int[[4]](b); /* constructs value array from mutable array */
int[] lju = new int[](ju); /* constructs Lime array from Java array */

Any kind of array can be made from any other kind of array as long as no size violation
occurs. This is especially useful when converting between mutable and immutable represen-
tations of an array. Conversion by construction, unlike conversion by assignment or casting,
makes a copy, avoiding what would otherwise be unsafe type changes.

Although changing between bounded and unbounded can most simply be done by as-
signment or casting, when this change is combined with a change in mutability it may also
be done by construction to save steps. All required length checks are performed by the
constructor.

Copy-construction of arrays extends to multiple dimensions as long as no size violation
occurs at any dimension in forming the result. This can allow conversion in cases that would
be unsafe without making a copy, such as converting int[4][4] to int[][].

A Java array being converted by construction to a Lime array may have an element
type that is wider than that of the array being constructed. A ClassCastException or
IllegalArgumentException occurs if an element type cannot be narrowed to the target type or
if a null appears where a value is expected. This liberality is needed to balance the fact that
Java arrays may not have a value element type other than the primitive types.

12.5.1 Repeats in Array Initializers

Lime adds a small convenience function to array initialization: repeat counts, as in C.

int[] foo = {(100) 6, 0, 1, (2) 6};

The length of foo will be 104, with the first 100 elements being 6, followed by 0, 1, 6,
6. The expression between parentheses must be a compile time constant expression yielding
a positive integer result, and the semantics of the initializer is precisely as if the element
following the repeat count were lexically repeated the stated number of times.

12.6 Arrays as Generic Types

To understand how Lime arrays interact with other Lime features, it is useful understand
that the array syntax is (in Lime) syntactic sugar for four generic types in package lime.lang.

1. Array<E> is the unbounded mutable array type, usually represented as E[].

2. valueArray<V extends Value> is the unbounded value array type, usually represented
as V[[]].

3. BoundedArray<E,B extends ordinal> extends Array<E> is the bounded mutable
array type, usually represented as E[B], with the ordinal type usually abbreviated as
an integer constant expression (see Section 9.1).

59

4. boundedValueArray<V extends Value,B extends ordinal> extends valueArray<V>
is the bounded value array type, usually represented as V[[B]], with the ordinal type

abbreviated as above.

It is possible to declare arrays using the generic syntax, although usually this is unnec-
essary and just makes the program harder to read. However, the fact that Lime arrays are
also generic types makes it possible to define a variety of additional behaviors which are
implemented as methods of the array classes. The array classes also have a series of super-
interfaces which abstract various aspects of their behavior. Among those are Iteratable and
Collectable which give arrays common behavior with other types in Lime.

It is not possible to create arrays using the generic syntax: the array types have no public
constructors. Rather, the array creation syntax shown previously must be used.

Since Lime arrays are instances of a generic type, many operations are possible on them
by invoking instance methods.

Lime arrays implement Indexable and Collectable (value arrays implement ValueCollectable
) and so can participate in collective operations as discussed in chapter 18).

All Lime arrays provide size() and iterator() methods, making them more like collections
(these methods are contributed by the interfaces Sizeable and Iteratable, respectively). Lime
arrays also have a .length field for compatibility with Java.

The toJavaArray method has the following signature.

public local <T> T toJavaArray(T into);

It is a generic method that infers the type of its result from the type of its argument;
it always copies into an existing Java array provided as an argument and then returns the
result. Just like the similar toArray() method of Java collections, it will reallocate the array
if it is not of the right size. For example, given a Lime array x of type int[] one produces the
int˜[] equivalent using

int˜[] y = x.toJavaArray(new int˜[x.length]);
// or
int˜[] y = x.toJavaArray(new int˜[0]);

Note that Java arrays are constrained from having a value element type or a type variable
element type that could be later substituted by a value type. Thus, the previous example
would have failed if you used bit instead of int. The Java array must be one capable of
receiving the contents of the Lime array without an ArrayStoreException.

Lime arrays can be turned into streams as discussed in chapter 15.7.
The java.util.Arrays class provides useful utilities for arrays, and the System.arraycopy()

method is heavily used. These do not work with Lime arrays. Instead, Lime arrays provide
the same functionality as instance methods arraycopy, binarySearch, sort, and fill.

There are some other methods that are applicable to arrays that are more usefully dis-
cussed in their own sections.

60

12.7 Bit Array Literals

The type lime.lang.bit is given extra syntactic sugar in Lime due to the importance of bits to
hardware programming. In particular, Lime provides bit literals (described in section 10.2)
and bit array literals (described here). The general form of a bit array literal is IbS where
I is a sequence of binary digits 0 and/or 1, and S, if present, is a positive integer in decimal
form.

A bit array literal denotes a bounded value array of lime.lang.bit. If S is present, the
bounding type is the ordinal type of size S. If S is absent, the bounding type is the ordinal
type whose size is the length of the literal.

A small irregularity exists because 0b and 1b are bit literals, not bit array literals. Thus,
to express an unbounded value array of bits whose length is 1 you need the array initializer
syntax ({0b} or {1b}). Otherwise, for example, 10b is equivalent to new bit[[2]]({1b,0b}) and
10b6 is equivalent to new bit[[6]]({(4)0b, 1b, 0b}) (zero extension on the left). It is illegal
for the number of binary digits to exceed the size bound, even if the leftmost digits include
enough zeros to avoid loss of significance.

12.8 Java Compatibility

Java does not understand Lime arrays and Lime arrays have no useful Java supertypes other
than Object. Therefore, Lime arrays can only be passed to Java as Object, where they
remain opaque. To interoperate with Java, one can use Java arrays in lieu of Lime arrays
(only recommended for sections of code that interoperate with Java at high frequency).
Alternatively, use the toJavaArray method to convert Lime arrays to Java ones and the
appropriate array copy constructor to construct a Lime array from a Java one. Both of these
transformations copy the contents of the array (deeply, in the case of a multi-dimensional
array).

12.9 New Grammar

The ArrayType production is defined in section 4.3 of the Java Language Specification.

ArrayType ::= Type ’[’ ’]’

In that definition, Type includes ArrayType, making the definition recursive. To define the
Lime extensions, we first alter the production to the equivalent, more convenient, form.

ArrayType ::= ArrayTypeBase Dims
ArrayTypeBase ::= PrimitiveType
ArrayTypeBase ::= ClassOrInterfaceType

61

The ClassOrInterfaceType production is also defined in section 4.3 of the JLS and PrimitiveType

in section 4.2. The Dims production, although new in this context, also replaces the Dims de-
fined in the JLS, section 15.10 (array creation expressions). The LimeAbbreviatedOrdinal is
defined in this manual in section 9.3.

Dims ::= LimeValueDims
Dims ::= LimeMixedDims
LimeValueDims ::= ’[’ NestableDims ’]’
LimeMixedDims ::= AnyDims LimeValueDimsopt

NestableDims ::= NestableDim
NestableDims ::= NestableDims NestableDim
AnyDims ::= AnyDim
AnyDims ::= AnyDims AnyDim
AnyDim ::= NestableDim
AnyDim ::= JavaDim
JavaDim ::= ’~’ ’[’ ’]’
NestableDim ::= UnboundedDim
NestableDim ::= ExplicitBoundedDim
NestableDim ::= ImplicitBoundedDim
UnboundedDim ::= ’[’ ’]’
ExplicitBoundedDim ::= ’[’ BoundType ’]’
BoundType ::= PrimitiveType
BoundType ::= ClassOrInterfaceType
ImplicitBoundedDim ::= ’[’ LimeAbbreviatedOrdinal ’]’

The ArrayCreationExpression of section 15.10 of the JLS is replaced as follows. The
ArrayInitializer production is from section 10.6 of the JLS, as amended below.

ArrayCreationExpression ::= ’new’ LimeArrayDescription
LimeArrayDescription ::= LimeArrayWithInitializer
LimeArrayDescription ::= LimeArrayWithNewStyleArgs
LimeArrayDescription ::= LimeSimpleArray
LimeArrayWithInitializer ::= LimeSimpleArray ArrayInitializer
LimeArrayWithNewStyleArgs ::= SimpleArray ’(’ ArgumentListopt ’)’
LimeSimpleArray ::= ArrayTypeBase CreateDims
CreateDims ::= CreateMixedDims
CreateDims ::= CreateValueDims
CreateMixedDims ::= CreateAnyDims CreateValueDimsopt

CreateValueDims ::= ’[’ CreateNestableDims ’]’
CreateNestableDims ::= CreateNestableDim
CreateNestableDims ::= CreateNestableDims CreateNestableDim
CreateAnyDims ::= CreateAnyDim
CreateAnyDims ::= CreateAnyDims CreateAnyDim

62

CreateAnyDim ::= CreateNestableDim
CreateAnyDim ::= CreateJavaDim
CreateJavaDim ::= ’~’ ’[’ DimExpropt ’]’
CreateNestableDim ::= ’[’ DimExpropt ’]’
DimExpr ::= Expression
DimExpr ::= LimeOrdinal

Note the need to distinguish between a Dim and a CreateDim. This is due to the different
set of constructs that are legal between the square brackets.

The ArrayInitializer in section 10.6 of the JLS is not changed but the list of contained
elements, known as VariableInitializers is amended as follows.

VariableInitializers ::= LimeVariableInitializer
VariableInitializers VariableInitializers ’,’ LimeVariableInitializer
LimeVariableInitializer ::= Expression
LimeVariableInitializer ::= ArrayInitializer
LimeVariableInitializer ::= ’(’ LimeRepeat ’)’ SimpleVariableInitializer
SimpleVariableInitializer ::= Expression
SimpleVariableInitializer ::= ArrayInitializer
LimeRepeat ::= ConstantExpression

63

Chapter 13

Tuples

Tuples are immutable collections of heterogeneous objects. They are written with a “`”
(backquote) followed by a parenthesized set of values, such that the backquote and the
opening parenthesis are contiguous (no intervening white space). Examples of tuples are

`(1, ”foo”)
`(666)
`(2, 1.14159, new Blah())

Tuples consisting entirely of value types are themselves value types; tuples containing non-
value types are not values. Two tuple type declarations that employ the same types in the
same positions are the same type and will interoperate (structural equivalence).

The scope within which two independent tuple declarations are recognized as structurally
equivalent is global (if all member types are public), else the package plus subclasses (if all
member types are either public or protected), else the package only (if no member types
are private or locally declared within a block), else the class (if no member types are locally
declared within a block), else the block (if any member type is locally declared).

Tuple type definitions can be used as follows:

`(int, String) pair = `(1, ”foo”);

public `(int, double, Blah) bar() { return `(2, 1.14159, new Blah()); }
Tuples must have at least two fields. The singleton tuple and the empty tuple are both

disallowed since having them would cause ambiguities when mapping between tuple types
and method signatures.

A tuple can also be passed as the sole apparent argument to a method or constructor
if the members of the tuple, matched successively against the successive formal parameters
of the method or constructor, would be legal arguments. A tuple passed as a sole apparent
argument is expanded eagerly prior to method lookup.

String f(int a, String b) { return b+a; }
x = `(1, ”foo”);
f(x)

64

By saying that the tuple must be the sole apparent argument we mean to rule out invocations
like g(x, y) where g is a method of three arguments, x is a tuple of two members, and y is
some other expression. Lime would flag such invocations as type mismatches. Methods may
have signatures that use tuples explicitly (in that case, for a tuple to match the signature it
would need to have an embedded tuple).

However, a method or constructor with exactly one argument, where that argument has
a tuple type, is disallowed by Lime. Such a method, were it to exist, would be inaccessible
due to the rule that tuples are expanded eagerly before lookup. On the other hand, the
eager expansion means that tuples can match variable arity (“varargs”) methods as well.

13.1 Tuple Element Access

The elements of a tuple can be accessed using a dot (“.”) following by a 0-based integer
literal indicating its position in the tuple. Thus:

double pi = `(1, 3.14159, ”blah”).1;
String s = pair.1;

Note that constant expressions are not allowed for accessing tuple elements. That is,
x.(1+2) is illegal.

13.2 Tuple Element Binding

The elements of a tuple may be bound to variables as follows:

`(int a, String b) = `(1, ”foo”);
int x;
String y;
`(x, y) = `(2, ”bar”);

Regardless of whether types are declared inside the tuple-form left-hand-side or outside,
all assignments with tuples on the left are statements, not expressions.

Element-wise type compatibility and widening is provided for tuples. Thus the following
assignments are legal:

`(double, String) x = `(1, ”foo”);
`(long, Object) y = `(1, ”foo”);

When only some of the elements of the tuple are needed, the anonymous variable “ ” (a
single underscore character) can be used in order to discard the value. For instance,

`(, String b) = `(1, ”foo”);
int x;
`(x,) = `(2, ”bar”);

65

The “ ” (single underscore) is a reserved identifier in Lime.

13.3 Java Compatibility

Tuples may not be passed to Java code. Instances of classes with non-private methods that
accept explicit tuple arguments or return tuple results or with non-private fields of tuple
type are also not Java compatible. However, classes with private fields of tuple type are Java
compatible if they do not violate any other rules. The use of a tuple as the sole argument
to a method invocation is allowed for invoking Java methods, since the tuples are expanded
at the call site.

13.4 New Grammar

See section 4.3 of the Java Language Specification for ClassOrInterfaceType, section 4.1
for Type, section 15.27 for Expression, section 15.8 for PrimaryNoNewArray, section 15.14 for
PostfixExpression, section 15.11 for FieldAccess, 3.10.1 for IntegerLiteral and 3.10.2 for
DecimalFloatingPointLiteral.

ClassOrInterfaceType ::= LimeTupleType
LimeTupleType ::= ’`(’ LimeTupleTypeList ’)’
LimeTupleTypeList ::= Type
LimeTupleTypeList ::= LimeTupleTypeList ’,’ Type
PrimaryNoNewArray ::= LimeTupleExpression
LimeTupleExpression ::= ’`(’ LimeExpressionList ’)’
LimeExpressionList ::= Expression
LimeExpressionList ::= LimeExpressionList ’,’ Expression
PostfixExpression ::= LimeTupleAssignmentReceiver
LimeTupleAssignmentReceiver ::= ’`(’ LimeTupleAssigneeList ’)’
LimeTupleAssigneeList ::= LimeTupleAssignee
LimeTupleAssigneeList ::= LimeTupleAssigneeList ’,’ LimeTupleAssignee
LimeTupleAssignee ::= Type IDENTIFIER
LimeTupleAssignee ::= PostfixExpression
FieldAccess ::= LimeTupleFieldAccess
LimeTupleFieldAccess ::= TupleReceiver TupleProjection
TupleProjection ::= ’.’ IntegerLiteral
TupleProjection ::= DecimalFloatingPointLiteral
TupleReceiver ::= Name
TupleReceiver ::= Primary

Note that the DecimalFloatingPointLiteral production is required as part of the definition
of TupleProjection since a sequence like .2 is recognized lexically to be such a literal. However,

66

to be legal, a TupleProjection must consist of a period followed only by digits that make up
a non-negative decimal integer.

The ability to use tuples as the sole apparent argument of a method or constructor
invocation does not require new syntax; it is merely a change to the semantics of matching
arguments against parameters.

67

Chapter 14

Local and Global Methods

A local method is one that does not write any static fields and does not read any static fields
except repeatable static fields as defined in Section 14.2. A global method is one that may
freely access all static fields.

A local method may only invoke other local methods. A global method may invoke
either local or global methods. A local method may not be overridden or implemented by
a global method.

By default, the instance methods and constructors of value types are considered to be
local, while all static methods and the instance methods and constructors of non-value types
are considered to be global. The defaults may be overridden by using the local and global
keywords. As the defaults apply even to system-generated default constructors, it may be
necessary to write out such declarations in order to change the defaults.

Bear in mind that, unless a constructor invokes another constructor, it implicitly includes
the initialization of all instance fields that have initializers. Thus, labeling any such con-
structor as local implies that the initializers of instance fields would be legal inside a local
method.

Although local and global are implementation properties and not interface properties,
these modifiers are permitted on abstract methods, including the methods of interfaces, since
that facilitates separate checking. The methods of a value interface and the abstract methods
of a value class are considered local by default. All other methods (including the methods
of a universal classes and interfaces) are global by default. In order to facilitate extension
of universal types by value classes, attention should be given to correct labeling of those
methods intended to be local.

class Foo {
static int x = 7;
static final int z = 9;
int getX() { return x; }
local int localGetX() { return x; } // error
local int getZ() { return z; }

}

68

value class bar {
static int y = 9;
int localGetY() { return y; } // error
global int getY() { return y; }
int getZ(Foo f) { return f.getZ(); }
int getX(Foo f) { return f.getX(); } // error

}

Lime permits and encourages the placement of local and global keywords on native
methods as well as on those written in Lime. Native methods in Lime may be implemented
by IP blocks in hardware or some other back-end-specific mechanism, in addition to the
normal JNI implementation for use within a JVM. A different native implementation may
be required for each distinct backend. The Lime compiler does not check native code, so it
relies on the programmer to correctly distinguish native methods that mutate global state
from those that do not. The default for native methods is the same as for methods in general,
so native methods of value classes are considered local by default.

14.1 Other Restrictions

Thread scheduling is part of the global static state of the system. Therefore, synchronization
is not allowed in local methods. More particularly, if the synchronized modifier is applied
to a method, of if a method contains a synchronized block, then the method must be global.

In addition, finalize() methods must be global. Since finalize() methods are called on
objects once they have become unreachable, the only way for a finalize() method to do
anything useful is to access a static variable.

14.2 Repeatable Static Fields

A static field is repeatable if it meets all of the following criteria.

1. It must be final with an explicit initializer (not “blank final” with separate initialization
in a static clause).

2. It must be of value type.

3. If its initializer were prepended with the return keyword and terminated with a semi-
colon, the result could be (without error) the sole statement in a local static method
with no arguments.

4. It may not refer directly or indirectly (via other static variables) to the variable it
initializes (this would make its value dependent on the order in which classes are
initialized).

69

For example, x defined as “static final bit x = new bit();” is a repeatable static field
because it is final, of value type, and the following would be legal.

static local bit foo() {
return new bit();

}

However, y defined as “static final long y = System.nanoTime();” is not a repeatable
static field because, although it is final and of value type, the following is illegal.

static local long foo() {
return System.nanoTime(); // error: not local

}

14.3 Local/Global Polymorphism

Whether a method accesses global state is often a function of its input arguments. For
instance, most equals() methods do not access global variables, and in most cases it is not
good programming practice to do so. On the other hand it is not disallowed.

Glocal methods provide a mechanism for defining methods which may be local or global
depending on their argument types. For instance

glocal boolean thatEquals(Object that) { return that.equals(this); }

global boolean fooEquals(Foo that) { return thatEquals(that); }
local boolean barEquals(bar that) { return thatEquals(that); }

Because thatEquals() calls the equals() method of a parameter of type Object, which can be a
global method, thatEquals() can not be declared as a local method. And indeed, when called
with a parameter of type Foo in the fooEquals() method, it behaves like a global method.

However, since bar is a value type, its equals() method is local. When such a parameter
is passed to a glocal method, the called method becomes local in that calling context. Thus
it is legal to call thatEquals() from the local method barEquals().

The rules for glocal methods are as follows:

� access to static fields is prohibited unless they are repeatable;

� calling final global methods is prohibited;

� calling global methods is prohibited except when the receiver is a parameter of the
method being defined, or if its type is a generic type parameter;

� calling other glocal methods is only allowed when it would be allowed for a global one
by the previous rule or when such a call is localizing as described below.

70

A local method may only call a glocal method when all of its parameters are localizing.
An actual parameter localizes a formal parameter when all of the accessible non-final instance
methods of the formal parameter are local in the static type of the actual parameter.

The overriding rule follows a simple pattern: local > glocal > global. A method may
not override one that is “greater than” it in this relation.

14.3.1 Generics and Glocal Methods

When used in combination with generics, a glocal method can only be localized when all of
the generic parameters (as well as all of the method parameters) are localizing. For example,

class Holder<T> {
T item;
local Holder(T item) { this.item = item; }
local T get() { return item; }
glocal int hashCode() { return item.hashCode(); }

}

global int fooHash(Foo that) { return new Holder<Foo>(that).hashCode(); }
local int barHash(bar that) { return new Holder<bar>(that).hashCode(); }

Because the generic type parameter T of class Holder is unconstrained, its hashCode()
method can’t be defined to be local. However, it can be defined to be glocal.

Since a value type causes all of the non-final Object methods to become local, all value
types localize parameters of type Object. Thus when the value type bar is used to instantiate
the Holder class, the hashCode() method is localized, and can be called from the local method
barHash().

14.4 Multiple Method Definitions

When a class inherits multiple definitions of a method with identical type signatures but
different locality qualifiers, the following cases govern the resulting locality qualification and
the need to implement a new method.

1. The current type declares the method and there is more than one occurance in a
supertype. The new declaration must be at least as restrictive as the most restrictive
of the supertypes.

2. The current type does not declare the method and there is more than one occurance
in a supertype, all of them abstract. The more restrictive one dominates, because, in
any lookup or subsequent override the more restrictive one will dominate.

3. The current type does not declare the method and there is more than one occurance
in a supertype, one of which is concrete, and concrete one is the most restrictive. The

71

concrete method will dominate in any subsequent use (both because it is concrete and
because it is the most restrictive).

4. The current type does not declare the method and there is more than one occurance
in a supertype, one of which is concrete, but the concrete one is less restrictive than
some abstract one. There are two subcases.

(a) The concrete method is glocal but some abstract method is local. In this case,
the compiler will generate a simple delegator which is local but invokes the glocal
concrete method passing through any arguments. The resulting delegator may be
legal (if the delegating call is localizing), in which case there is no error. Otherwise,
the appropriate error for a non-localizing call to a glocal method will be displayed.
To correct the error, the method must be overridden as in case (1).

(b) For any conflict not covered by the previous clause, an error is indicated: the
method must be overridden as in case (1).

14.5 The Mutable Class and the Local Interface

In order to maximize reuse, it is highly desirable that classes be usable in a local method,
and as localizing parameters. Most fundamentally, as we have just seen, is that the three
overridable public methods of Object – equals(), hashCode(), and toString() – should be local
whenever possible.

For values, the localness of these methods is provided and enforced by the compiler. For
non-values, the programmer must take care to ensure this property. The easiest way to do
so is to have a non-value class extend lime.lang.Mutable, rather than Object.

The Mutable class provides local implementations of the three key Object methods. The
equals() method simply uses the “==” method on its arguments (checking for object iden-
tity); the toString() method returns the class name appended with an “@” and the object’s
hash code, and the hashCode() method produces a hash code computed entirely from the
values of the fields of the object.

Note that the default Object.hashCode() method, as well as System.identityHashCode(),
are global methods. Because their values change unpredictably with each instance of an
object, they can not be used to create repeatable static fields. On the other hand, Mutable’s
hashCode() method can be used in computing a repeatable static.

In general, it is good Lime programming practice to make all non-value classes extend
Mutable unless there is compelling reason against it.

Both Mutable and Value implement the Local interface:

public universal interface Local extends Glocal {
local boolean equals(Object obj);
local int hashCode();
local String toString();

}

72

And for completeness Lime also provides:

public universal interface Glocal {
glocal boolean equals(Object obj);
glocal int hashCode();
glocal String toString();

}

14.6 Debugging

Because local methods may not access any global state, they can not, for instance, call
System.out.println() for debugging purposes. Lime provides a general facility for performing
debugging actions. Debugging actions are omitted in normal execution and any compiler is
free to ignore them (for instance, the hardware compiler might not execute debugging oper-
ations designed to produce terminal output). In the latter case the compiler emits a warning
message identifying which debugging activities will be ignored even though debugging is
enabled.

The class lime.lang.Debug provides capabilities for such debugging actions. The core
functionality is a pair of static methods called debugRun(), which are declared to be local
methods but which take a special kind of runnable object and run its (non-local) method
runWhenDebugOn(). This allows the implementation to pass arbitrary closures that per-
form potentially side-effecting operations, but because all global debugging operations pass
through these two methods, they can easily be controlled and disabled.

While the Debug class is only needed inside of local methods, it should be used consis-
tently across all code when performing debugging-related output.

The two runnable interfaces are:

public interface DebugRunnable {
public void runWhenDebugOn(Object... args);

}

public interface DebugAccessorRunnable {
public Object runWhenDebugOn(Object... args);
public local Object runWhenDebugOff(Object... args);

}

These interfaces are supported by the following methods of Debug:

public static local void debugRun(DebugRunnable toRun, Object... args);
public static local Object debugRun(DebugAccessorRunnable toRun, Object... args);

A very simple debugging facility which just prints a list of objects, one per line, can be
built as follows:

73

static void debugprint(Object... objs) {
Debug.debugRun(new DebugRunnable() {

public void runWhenDebugOn(Object... args) {
for (Object o: args) { System.out.println(o); }

}
}, objs);

}
Using this paradigm, more complex facilities can be built up, including generation of perfor-
mance traces, log files, and so on.

The Debug class provides convenient methods for textual output:

public static local void print(Object... objs);
public static local void println(Object... objs);
public static local void printf(String format, Object... args);
public static local void printf(Locale locale, String format, Object... args);

By default, output from these Debug methods is directed to System.out. This behavior can
be changed with setDebugOutput(). The static methods out() and err() also return objects
which can be used to print explicitly on System.out and System.err, respectively. However,
when debugging is off, these printing operations will be ignored.

The latter functionality is supported with the second style of runnable, the DebugAccessorRunnable
. Unlike the first form, it allows an arbitrary object to be returned. However, when debugging
is off or not supported for the compilation target, the runWhenDebugOff() method will be
invoked instead. Since this method is constrained to be local, no global side-effects may be
performed. In the case of Debug.out() when debugging is off it returns a DebugNullPrinter
object, whose implementation of all the output methods is a no-op.

14.7 Java Compatibility

The presence of local, glocal or global modifiers on the methods of a Lime class does not
cause it to become incompatible with Java, as long as the class is otherwise Java-compatible.
Such modifiers are invisible to the Java code.

The static and instance methods of Java classes are normally considered global and so
cannot normally be used in many contexts where Lime requires them to be local or glocal.

It is possible to use pH to label any method of any final Java class as local or glocal if it
can pass the necessary static checks. The class has to be final because otherwise subsequent
Java overriding can violate the implied contract.

Java class libraries used by the Lime class libraries are assumed to have labelled all
constructors of the following classes as local.

// java.lang
Object
Byte
Character

74

Double
Float
Integer
Long
Short
Boolean
Void
Throwable (and all subclasses defined by the Java spec)

// java.util
all subclasses of Throwable in the package

// javax.sound.sampled
AudioFormat
AudioFormat.Encoding

Java class libraries used by the Lime class libraries are assumed to have labelled the
following specific methods and constructors as local.

// java.lang.Object methods
getClass()

// java.lang.Class methods
getName()
getFields()

// hashCode() methods in java.lang
String.hashCode()
Boolean.hashCode()
Long.hashCode()
Integer.hashCode()
Short.hashCode()
Byte.hashCode()
Character.hashCode()
Float.hashCode()I
Double.hashCode()I

// toString() methods in java.lang
String.toString()
Boolean.toString()
Long.toString()
Integer.toString()
Short.toString()
Byte.toString()
Character.toString()
Float.toString()
Double.toString()

75

// static toString() methods in java.lang
Boolean.toString(boolean)
Long.toString(long)
Integer.toString(int)
Short.toString(short)
Byte.toString(byte)
Character.toString(char)
Float.toString(float)
Double.toString(double)

// java.lang.String constructors
String(String)
String(char[])
String(char[],int,int)
String(StringBuffer)
String(StringBuilder)
String(int[],int,int)
String(byte[])
String(byte[],int,int)

// java.lang.String methods
length()
charAt(int)
concat(String)
compareTo(String)
substring(int,int)
subSequence(int,int)
getChars(int,int,char[],int)
equalsIgnoreCase(String)
regionMatches(int, String, int, int)
regionMatches(boolean,int,String,int,int)
startsWith(String,int)
startsWith(String)
endsWith(String)
indexOf(int)
indexOf(int,int)
lastIndexOf(int)
lastIndexOf(int,int)
indexOf(String)
indexOf(String,int)
lastIndexOf(String)
lastIndexOf(String,int)
toCharArray()
substring(int)

76

replace(char,char)
toLowerCase()
toUpperCase()
trim()
split(String,int)
copyValueOf(char[])
copyValueOf(char[],int,int)
valueOf(boolean)
valueOf(byte)
valueOf(char)
valueOf(float)
valueOf(double)
valueOf(int)
valueOf(long)
valueOf(short)
valueOf(char[])
valueOf(char[],int,int)

// java.lang.StringBuilder constructors
StringBuilder()
StringBuilder(int)
StringBuilder(String)

// java.lang.StringBuilder methods
toString()
append(String)
append(StringBuffer)
append(boolean)
append(byte)
append(char)
append(float)
append(double)
append(int)
append(long)
append(short)
append(char[])
append(char[],int,int)
subSequence(int,int)
charAt(int)
length()

// Number methods in each of the final subclasses
// of java.lang.Number

floatValue()
doubleValue()

77

byteValue()
shortValue()
intValue()
longValue()

// Misc methods of specific Number classes
Double.doubleToLongBits(double)
Float.floatToIntBits(float)
Integer.toHexString(int)
Integer.rotateLeft(int,int)
Integer.rotateRight(int,int)
Long.toHexString(int)

// java.lang.Character
toLowerCase(char)
toTitleCase(char)
toUpperCase(char)
isDefined(char)
isLetter(char)
isDigit(char)
isLetterOrDigit(char)
isLowerCase(char)
isUpperCase(char)
isTitleCase(char)
isJavaIdentifierStart(char)
isJavaIdentifierPart(char)
isUnicodeIdentifierStart(char)
isUnicodeIdentifierPart(char)
isIdentifierIgnorable(char)
isDefined(int)
isLetter(int)
isDigit(int)
isLetterOrDigit(int)
isLowerCase(int)
isUpperCase(int)
isTitleCase(int)
isJavaIdentifierStart(int)
isJavaIdentifierPart(int)
isUnicodeIdentifierStart(int)
isUnicodeIdentifierPart(int)
isIdentifierIgnorable(int)

// java.lang.System
arraycopy(Object,int,Object,int,int)
identityHashCode() // but can't be invoked on values

78

// java.lang.Math
abs(int)
max(int,int)
min(int,int)
abs(long)
max(long,long)
min(long,long)
abs(double)
acos(double)
asin(double)
atan(double)
cbrt(double)
ceil(double)
cos(double)
cosh(double)
exp(double)
expm1(double)
floor(double)
log(double)
log10(double)
log1p(double)
max(double,double)
min(double,double)
nextUp(double)
rint(double)
signum(double)
sin(double)
sinh(double)
sqrt(double)
tan(double)
tanh(double)
toDegrees(double)
toRadians(double)
ulp(double)
atan2(double,double)
copySign(double,double)
hypot(double,double)
IEEEremainder(double,double)
nextAfter(double,double)
pow(double,double)
scalb(double,int)
round(double)

79

getExponent(double)
abs(float)
max(float,float)
min(float,float)
nextUp(float)
signum(float)
ulp(float)
copySign(float,float)
nextAfter(float,double)
scalb(float,int)
round(float)
getExponent(float)

// java.lang.reflect
Array.newInstance(Class,int)

// java.util
Arrays.hashCode(long[])
Arrays.toString(long[])
Arrays.equals(long[],long[])
Arrays.binarySearch(long[],long)
Arrays.binarySearch(long[],int,int,long)
Arrays.fill(long[],long)
Arrays.sort(long[])
Arrays.copyOf(long[],int)
Arrays.copyOfRange(long[],int,int)
... and similarly for other primitive arrays

Java class libraries used by the Lime class libraries are assumed to have labelled the
following specific methods and constructors as glocal.

StringBuilder(CharSequence)
StringBuilder.append(CharSequence)
StringBuilder.append(CharSequence,int,int)
StringBuilder.append(Object)
String.valueOf(Object)

.

14.8 New Grammar

In Lime, local, global and glocal are lexically reserved keywords and are considered to be
method modifiers as defined in section 8.4.3 of the Java Language Specification and also
abstract method modifiers are defined in section 9.4.

MethodModifier ::= ’local’

80

MethodModifier ::= ’global’
MethodModifier ::= ’glocal’
AbstractMethodModifier ::= ’local’
AbstractMethodModifier ::= ’global’
AbstractMethodModifier ::= ’glocal’

81

Chapter 15

Stream Computation

Lime offers language features for programming in the large. They are based on the creation
of data flow graphs that perform computation on streams of data. The approach exposes
algorithmic data-locality and communication topologies to a compiler that can then decide
on the best implementation choices depending on the target platform.

A dataflow graph, also known as stream graph, consists of nodes that perform computa-
tion and edges that imply an exchange of data between connected nodes. In Lime, nodes are
tasks (see 15.3) which read data from an input port, apply a worker method to the data, and
commit the results to an output stream. A task’s worker method can be applied repeatedly
as long as there are input data available on the port.

A simple task is illustrated in Figure 15.1. It is known as a Filter (see 15.4). Filters may
be stateless or stateful. Stateless filters do not maintain persistent state between applications
of the worker method, whereas stateful filters do maintain history. Tasks are created using
the task operator applied to a method.

Tasks may be connected to each other (see 15.6) so that the stream of one task is con-
nected to a port of another. The connections between tasks can be thought of as FIFO
buffers with one task writing at one end and another task reading at the other end. A se-
quence of connected tasks is known as compound filter or pipeline. An example is illustrated
in Figure 15.2: the output stream of worker1 is the input to worker2, and the output of
worker2 is the input to worker3.

Methods in Lime are mode-less. In other words, a method declaration is agnostic to its
eventual use: it may be used as a worker method in a task, or as a method invoked from
an instance object. Conceptually, one can think of the worker methods in tasks as wrapper
methods that are aware of the task port and stream. The wrapper reads a number of data
items from the input port, invokes the intended method using the appropriate parameters,
and then writes the returned results to the output stream. For a pair of connected tasks,
the return type of one method should match the input type of the other. If the types do not
quite match, but are compatible, Lime provides a matching operator to disaggregate and
reaggregate data (see 16). In example shown in Figure 15.3, the return type of work1 is a
bounded array of ints, whereas the work2 method expects a single scalar parameter of type
int. The types are considered compatible since they match with respect to the base type

82

char work(char c) {

 return toUpper(c);

}

stream

task (simple filter)

worker

method

port

Figure 15.1: A Simple Stateless Filter

worker1(…) { … }

port-to-stream

connection

worker2(…) { … } worker3(…) { … }

port-to-stream

connection

Figure 15.2: A Compound Filter Composed from Three Filters

(int) and hence the rate matcher can disaggregate the bounded arrays returned by the first
task and produce scalar values that are consumed by the second.

In addition to filters, there are splitter and joiner tasks (see 15.10). A splitter concep-
tually distributes its input to multiple tasks, and a joiner aggregates output streams from
multiple tasks into a single new stream. The example in Figure 15.4 shows a pipeline con-
sisting of a splitter, two filters, and a joiner. Lime’s language feature for stream computing
expose pipeline parallelism using compound filters, data parallelism using stateless filters,
and task parallelism using splitters and joiners.

Filters, and tasks in general are strictly isolated so that only a task can mutate its own
fields. In other words, a task may not contain references to globally visible objects that
are mutable. This is an important property that affords the compiler a lot of flexibility
in navigating the implementation-space for stream graphs. However, the strict isolation is
relaxed for two types of filters known as sources and sinks (see 15.7). As shown in Figure 15.5,

83

int[[2]] work1(int i) {

 int r = i+x;

 x = i/2;

 return new int[[2]]{r,i};

}

instance variables

(local state)

int x;

int work2(int i) {

 return i*3;

}

rate matcher

Figure 15.3: A Stateful Filter connected to a Rate Matcher that converts a stream of int[[2]]
into a stream of int.

sources and sinks may perform side-effecting actions that other tasks are not permitted to
perform. They may interact with the program heap, file system, and in general perform
input and output.

15.1 Stream Types

A stream is a possibly infinite sequence of values (that is, instances of the value types,
including primitive types, ordinal types, value enum types, value arrays, value classes, and
tuples made up entirely of values). The values of a stream can be retrieved in order. Usually,
once a value is retrieved from the stream it is no longer part of the stream. A “peek” operation
is provided, but efficient use of streams requires that access is largely sequential.

The simplest looking form of stream is a stream literal:

Stream<int> is = { 1, 1, 2, 3, 5, 8 };

In fact, a stream literal is actually a special case (with some syntactic sugar) of the source()
method of Lime arrays. The same affect can be achieved, more verbosely but ultimately
more generally, with the following.

Stream<int> is = (new int[[]]{ 1, 1, 2, 3, 5, 8}).source().out();

Stream types are not value types. Rather, they are reference types whose behavior is
defined by the lime.lang.Stream interface.

public interface Stream<T extends Value> extends Iteratable<T> {
public T get();
public T[[]] get(int n);
public T[[]] getAll();

84

joiner

worker2(…) { … }

worker2(…) { … }

splitter

Figure 15.4: A Compound Filter containing a Split and a Join

public T peek();
public T[[]] peek(int n);
public T[[]] peek(int skip, int n);
public boolean empty();
public Iterator<T> iterator();

}

While it is possible for a user-written class to implement this interface, only instances
produced by the operations of this section will have the behavior ascribed by this section to
streams.

Streams include operations to get the next element and find out if there are more elements:

while (! is.empty()) {
System.out.println(is.get() + ” ”);

}

will print out ”1 1 2 3 5 8”. An attempt to get an element from an empty stream will result
in a Stream−Underflow being thrown. Thus the code above could be written as

try {
while (true) {

System.out.println(is.get() + ” ”);
}

} catch (StreamUnderflow e) {
}

As will be seen, streams that arise in practice are often logically infinite, in which case
empty() always returns false. Thus, the second form is often preferable to the first.

85

Heap

worker1(…) { … } worker2(…) { … } worker3(…) { … }

source task

File System

sink task

Figure 15.5: A Complete Stream Graph with a Source, Filter, and Sink. Sources and Sinks
need not be isolated and may therefore access the heap and other forms of global state.

15.1.1 Inspection and Iteration

The get(n) method when supplied with a positive integer returns an array containing that
many elements, or throws a StreamUnderflow. The getAll() operation on a stream gets all
of the elements of a stream and returns them as an array. If the stream is unbounded, this
may involve a large delay or an OutOfMemoryException.

The peek operation is similar but leaves the values in the stream. peek() returns the value
at the head of the stream, and peek(n) returns an array containing the n values at the head
of the stream. The operation peek(s,n) returns an n-element array consisting of the n values
in the stream that follow the first s values in the stream. In all cases, StreamUnderflow is
thrown if there is insufficient data in the stream.

Both get and peek are only applicable to streams that have not been connected to
other tasks (see below). An attempt to use them on a connected stream will cause an
AlreadyConnectedException to be thrown.

Note that Stream implements Iteratable (see section 8); hence iteration over streams may
be performed with a for loop, as in

for (int i: is) {
System.out.println(”Value: ”+i);

}

86

As was the case with the empty() method, many streams will return iterators whose
hasNext() method always returns true and so loops such as the above may terminate by
throwing StreamUnderflow.

15.2 Ports

Streams are used to retrieve data; ports are used to supply data.
Port types are declared using the Port interface.

Port<int> p;

The definition of Port is:

public interface Port<T extends Value> {
public void put(T val);
public void put(T[[]] vals);
public void close();

}

Just as streams provide a get() operation, ports provide a put() operation, which sends
a value to the port:

p.put(7);

There is an array generalization of put but there is no way to write values out of order or to
change a value that is already written. The close operation is used to terminate a task by
producing a StreamUnderflow indication on its port; there is more on this in section 15.8.

The put() and close() operations are only legal if the port has not yet been connected to
a stream; otherwise, an AlreadyConnectedException is thrown.

If repeated put() operations are performed without consuming values at the other end
of the task graph, the number of values stored in the queue associated with the port may
exceed its capacity. In this case a StreamOverflowError is thrown by the put() operation.

In the following section we will see how ports are created and associated with tasks.

15.3 Tasks

In general, streams of data are produced by tasks. Task outputs are called streams, and task
inputs are called ports. Tasks can be classified along two dimensions, as follows.

Tasks are either closed, simple or compound. A closed task has no ports or streams. A
simple task has at most one port and at most one stream but is not closed. A compound
task has more than one port or more than one stream or both.

Tasks are either user, system, or aggregate tasks. The first two of these are called primitive
tasks because they were not constructed from smaller tasks. A user task runs user-written
code. A system task runs system-provided code. An aggregate task is constructed by
assembling other tasks.

87

A user task is always a simple task. System and aggregate tasks may be simple or
compound and aggregate tasks can be closed.

Tasks with exactly one port and exactly one stream are called filters. User filters are
constrained to produce one physical output value for each physical input value. Other rates
are expressed by using aggregate types (consuming an array or tuple of values and producing
an array or tuple of values). System filters called matchers (described in section 16) can
be interposed between user filters to aggregate, disaggregate, or reaggregate these arrays or
tuples.

Filters (in fact, most but not all tasks) have the property that they are isolated from
the rest of the system in that they only observe data via their ports and only generate data
via their streams. These data are constrained to be values. Therefore, most tasks can not
perform side-effects on other tasks or on the program heap (the exceptions are sources and
sinks, which are discussed in section 15.7).

15.3.1 Isolation

User filters can be created from constants, static methods, instance methods, or operators.
However, they can only be created from entities that satisfy one of two isolation properties.

1. Some entities are inherently isolated, meaning that it does not matter what references
to the entity may exist.

2. Others are sole-reference isolated, meaning that an appropriately isolated task can be
created from them by (and only by) ensuring that the task holds the sole reference to
the object.

Inherent isolation is defined as follows.

� An instance of a value (value class, value array, ordinal, value enum, or primitive type)
is inherently isolated when used as a constant.

� An instance method of a value or a static method is inherently isolated if it is local
and has only value arguments and a value (or void) return.

� A user-defined operator of a value is inherently isolated if it meets the same criteria
as the previous. The language-defined operators on the primitive types meet these
criteria a priori.

Sole-reference isolation is defined for pairs consisting of a constructor and an instance
method from the same class or one of its superclasses. The property holds for the instance
method iff the constructor is used to create the instance and the task holds the sole reference
to that instance.

� A constructor is isolating if it is local and has only value arguments.

88

� An instance method is sole-reference isolated with respect to an isolating constructor
of the same class or a subclass if it is local, and it has only value arguments and a
value (or void) return.

Sole-reference isolation is used to create stateful (history-sensitive) tasks, which is not
possible using values or static methods. The instance method selected to define the task
may mutate the instance to keep state. Sole-reference isolation works even if the class also
defines global instance methods, because the local method will (by definition) not call these
and isolation assures that no other code will either. Sole-reference isolation works even if the
class has mutable public fields because, even if the chosen instance method accesses these,
no other code will.

Both kinds of isolation are checked statically by the compiler. This can be done without
interprocedural analysis because the definitions depend only on staticness, valueness, and
localness, which are present in declarations.

Task creation operations correspond to these different kinds of isolated entities, and are
described below.

15.3.2 Task Types

Tasks are created with the task operator, which returns a “handle” for the task. This handle
is always a subclass of the type lime.lang.Task. The Task interface is not generic and has
only methods related to control, which are discussed later.

public interface Task {
public void start();
public Throwable rendezvous();
public boolean isRunning();

}
While the Task interface may be implemented by user code, the result is not a task as

defined in this section; true tasks are always created by the system.
User tasks are always one of the following subclasses. Only the Filter, Source, and Sink

types can be created directly; the SimpleTask and TerminalTask interfaces further refine what
operations the resulting tasks can perform.

public interface Filter<Tin extends Value, Tout extends Value> extends SimpleTask {
public Port<Tin> in();
public Stream<Tout> out();

}
public interface Source<Tout extends Value> extends TerminalTask {

public Stream<Tout> out();
}
public interface Sink<Tin extends Value> extends TerminalTask {

public Port<Tin> in();
}

89

public interface TerminalTask extends SimpleTask {
public boolean isIsolated();
public Object getWorker();
// Explained later

}
public interface SimpleTask extends Task {

// Covers all Tasks that have at most one port and at most one stream
}

In other words, user tasks are limited to filters (single input, single output), sources
(single output) and sinks (single input).

The entities (methods, constants or operators) used to create filters must be isolated. As
will be seen, sources and sinks (which extend TerminalTask) are exempt from this rule.

15.3.3 Logical Rates

A Filter has a rate property which is the ratio between the number of input values and the
number of output values. The rate for user filters is always 1:1. The use of rate matching
(see Section 16) may create system filters with non-unit rates.

The input and output counts that comprise a ratio are actually ranges. The lower bound
of either range can be zero. The upper bound of either range can be infinite. A rate in which
both input and output can be anything from zero to infinity basically means that nothing
is known about the rate. The most useful rates are those in which both input and output
are narrowed to a single integer (e.g. 1:5).

15.4 Filter Creation

We now describe the various means for creating user filters. The creation of user sources
and sinks is covered later.

For present purposes we will use these example type definitions:

value class foo {
static final double p = Math.random();
static double addP(int a) { return p+a; }

int x;
foo(int n) { this.x = n; }
int add(int a) { return x+a; }
int this + (int a) { return add(a); }
int getX() { return x; }

}

90

15.4.1 Filters from Static Methods

Isolated static methods with at least one parameter and a non-void return type can be used
to create filters as follows:

Filter<int, double> addrandom = task foo.addP(int);

More generally, the task keyword is followed by name of a static method, qualified by
its signature to make the reference unambiguous. The type of this kind of task expression
is a Filter whose port type is derived from the method’s parameter list (which must not be
empty if a filter is intended) and whose stream type is the return type of the method (which
must not be void when a filter is intended). Methods with empty parameter lists or void
returns can be used to create sources and sinks, as described later.

The port type of a Filter is a tuple type if the number of arguments is greater than one.
Otherwise, the port type of a Filter is the type of the method’s single argument.

15.4.2 Filters from Value Instance Methods and Operators

Any inherently isolated instance method of a value class can be used to create a task. This
includes user-defined operators of user-defined value classes, and extends to the primitive
types, treated as values, for which the operators may also considered to be instance methods.
These cases are shown in the following examples:

foo f = new foo(7);
Filter<int, int> add7 = task f.add(int);
Filter<int, int> add7a = task {f + int};
Filter<int, int> add7b = task {7 + int};

The general rules are the same as for a static method except that the method or operator
is associated with specific value instance.

The set of operators that can be used in this way are exactly the set of normally im-
mutable operators that may be user defined (all the ones discussed in section 5 except indexed
assignment).

Note that curly braces are used when making a task from an operator. This syntax is
needed to disambiguate operator references from simple expressions (tasks produced from
expressions are discussed in section 15.7). The operator must be one that is legal for the
value, either because the value is of primitive type, or because it it is a user-defined value
type that implements the operator.

15.4.3 Filters from Non-value Instance Methods

So far, all of the tasks we have introduced have no mutable state. Suppose we wish to have
a stream operator that produces the average of its inputs. As previously discussed, this
requires the use of a non-value class, an isolating constructor, and an instance method that
is sole-reference isolated with respect to that constructor. We could define the following
class:

91

class Averager {
private double total;
private long count;

public local Averager() {}

public local double runningAverage(double x) {
total += x;
count++;
return total / count;

}
}

The constructor was explicitly declared local since methods and constructors of non-value
classes are global by default.

Then this class could be used to create an averaging task as follows:

Filter<double,double> avg = task Averager().runningAverage(double);

The task operator in this case performs the equivalent of a new operation on the
class using the isolating constructor, and then instantiates a stream task that executes the
runningAverage method for each value supplied on its input port. The task holds the sole
reference to the object.

To understand the general principle being illustrated, it is useful to rewrite the earlier
value instance method example so that it uses a single line of code.

Filter<int, int> add7 = task new foo(7).add(int);

That works because the add methods of all instances of foo (a value) are intrinsically
isolated. If we used the same expression with new Averager().runningAverage(double), how-
ever, the compiler would complain that this instance method is not intrinsically isolated
(the definitions deliberately do not assume that the compiler applies escape analysis to
answer isolation questions, which would probably work in this particular case, but would
lead to fragile and surprising results in general). The task creation expression, when only
sole-reference isolation exists, must name both the isolating constructor, its arguments, if
any, and the instance method to be used, all in a single expression. Thus, task Averager().
runningAverage(double) must be thought of as a single grammatic production that cannot be
broken up. To avoid a number of syntactic ambiguities, stateful filters cannot be constructed
from user-defined operators but require a named instance method.

For generality, we accept the form of task expression that is required by sole-reference
isolated methods even for intrinsically isolated methods. That is, the compiler would have
accepted task foo(7).add(int).

92

15.4.4 Abbreviation of Worker Methods

The method or operator used in a task creation operation is called the worker method of the
task.

When the method is unambiguous (not overloaded), the signature may be omitted in the
task creation expression, as in

Filter<int, double> addrandom = task foo.addP;
Filter<double,double> avg = task Averager().runningAverage;

15.5 Direct Use of Filters

When a task is first created, its port and stream are not connected to anything. Therefore,
they may be accessed directly with the put() and get() operators. For instance,

avg.in.put(2);
avg.in.put(6);
double a1 = avg.out.get(); // a1 == 2
double a2 = avg.out.get(); // a2 == 4

This capability should be used sparingly as correct use requires knowing the filter’s rate.
Connecting filters into graphs provides a less error prone way of accomplishing the scheduling.

15.6 Connecting Ports and Streams

The connect operator “=>” connects a stream to a port. So, using the example tasks created
above:

add7.out() => avg.in();

Note that add7.out() is of type Stream<int> while avg.in() is of type Port<double>. The
connection is legal because there is a widening conversion from int to double. A connection
requires that the receiving port have the same or wider type than the providing stream.

If either the port or the stream are already connected, an AlreadyConnectedException is
thrown.

It should be noted that any not-yet-connected stream can be connected to any not-yet-
connected port but the result is not necessarily legal and not necessarily schedulable. A
graph with cycles is illegal. However, cycles are not detected until the graph is started (see
section 15.8). Even a legal graph may not be statically schedulable due to unbalanced rates;
such a graph is dynamically scheduled, which may be inefficient and may embody deadlock
or unbounded queue growth. Better schedulability guarantees are obtained by following the
practices recommended in section 15.11.

The fact that explicitly cyclic graphs are illegal should not be taken as meaning that feed-
back within a graph is impossible. Such feedback must employ the techniques of messaging,
as described in section 17.

93

Once a port is connected, the put() operation is no longer allowed; if it is invoked, an
AlreadyConnectedException is thrown. Similarly, if a stream is connected, an attempt to use
get or peek operations will cause a AlreadyConnectedException to be thrown.

The connect operator can also be used on filters, in which case it returns a new filter
whose input type is that of the leftmost filter and whose output type is that of the rightmost
filter:

Filter<int, double> threestages = add7 => addrandom => avg;

Note that the types of the three filters are Filter<int,int>, Filter<int,double>, and Filter
<double,double>, making the composition legal.

Similarly, connecting streams to filters or filters to ports is allowed, and the result is the
end of the filter that was not just connected:

Filter<int, double> f = ...;
Stream<int> s1 = ...;
Stream<double> fstream = s1 => f;

Filter<double,string> g = ...;
Port<string> p1 = ...;
Port<string> gport = g => p1;

15.7 Sources and Sinks

15.7.1 Sources

The simplest form of task is created from a simple value, and produces a task which pro-
duces an infinite stream which repeats that value. The task operator followed by the value
keyword and an expression that evaluates to a value creates a task, and returns an object of
parameterized type Source:

Source<int> threes = task value 3;
Source<bit> zeroes = task value bit.zero;
Source<uint> rand = task value (uint) Bar.p;

A source is also created if a parameterless method is used in the task creation. For
instance:

foo f = new foo(9);
Source<int> nines = task f.getX(void);

class Countup {
local Countup() {}
int x;
local int next() { return x++; }

}

94

Source<int> intsequence = task Countup().next(void);

The void type is used to remove any ambiguity about whether you are referring to the
method or invoking the method. In the absence of method overloading, both the parentheses
and the void may be omitted. That is, assuming there were no other getX or next methods,
then task f.getX and task Countup().next could have been used.

If you recall that binary operators (system-defined and user-defined) on values could be
used to create filters, you might wonder if unary operators can be used to create sources.
The answer is no. Since values aren’t stateful, something like task { +++0 } would be
constrained always to return the same answer and is not usefully better than task value 1.

The result of connecting a Source to a Filter with the => operator is a Source whose out
type is that of the Filter.

The source() and infinite() methods of Lime’s array types will produce sources that either
provide the elements of the array once, followed by a stream underflow (source), or provide
the elements repeatedly, producing an infinite stream (infinite).

The stream literal syntax shown at the start of this chapter is just syntactic sugar over
the source() method. But, source() and infinite() are general ways of turning arrays into
sources.

Unlike filters, sources and sinks are not required to be isolated. Any method with the
appropriate signature can be chosen. The isolation properties are checked by the compiler
just as for a filter. If the source or sink is, in fact, isolated, the compiler may make use of
that fact in generating more optimal code (therefore, it is good practice to accurately label
source and sink methods as local or global).

In addition, non-isolated sources and sinks are guaranteed to run on a Thread unique to
each such non-isolated source or sink. This thread identity is used, for instance, when a source
or sink performs synchronization operations, and is returned if the Thread.currentThread()
method is called.

In contrast, threads used to run isolated tasks are controlled by the system, which does not
guarantee a unique thread for each task. Methods of Thread that could reveal the underlying
thread or allow it to be manipulated are global and hence not accessible to isolated tasks.

15.7.2 Sinks

A sink is created when a task is instantiated with a void function or method. For instance

class DoSomething { native void act(int x); }
Sink<int> sink = task DoSomething.act(int);

The example shows a non-isolated sink (the native method act is global, since it is in a
non-value class and not declared local).

A second possible usage pattern is enabled by using an isolated sink in conjunction with
the getWorker method which is described more thoroughly in section 15.8. One possible
example is as follows.

95

public class MySink<V extends value> {
public local MySink() {

// make some collection
}
public local void consume(V item) {

// append to the collection
}
public V[] getArray() {
// return collection contents as an array
}

}
A Sink task created using the example class behaves like a Sink as long as the task is

running (which will as long as the stream feeding it data has not underflowed).

Sink<int> sink = task MySink<int>().consume;
someStream => sink;
sink.start();
sink.rendezvous();
int[] result = ((MySink<int>) sink.getWorker()).getArray();

The getWorker function returns the Object whose instance method is the worker method
of the task. It is only permitted on TerminalTasks. If such tasks are isolated and the task is
running, getWorker will throw IllegalStateException (it is impossible to retrieve the worker of
a running isolated task). If the worker method is static, getWorker returns null.

The result of connecting a Filter to a Sink with the => operator is a Sink whose in type
is that of the Filter. The result of connecting a Source to a Sink with the => operator is an
expression of type lime.lang.ClosedGraph.

public interface ClosedGraph extends Task {
}

A ClosedGraph has all the control operations of Task but no exposed port or stream on
which either get or put operations can be performed.

15.8 Task States

When a task is created, it is in the initial state. It does not pull data from its ports nor push
data to its streams. Simply connecting the ports or streams of a task to other tasks does not
immediately cause it to leave the initial state unless those connections are to already-running
tasks.

A task enters the running state when any of the following things happen.

1. A get or peek or getAll method is called on one of its unconnected streams.

2. A put method is called on one of its unconnected ports.

96

3. A task to which one of its streams or ports is connected moves to the running state or
the task is connected to another task that is already running.

4. The start method of the task is executed.

It follows that calling the start method on any task in a fully connected graph of tasks is
sufficient to start a chain reaction resulting in all the tasks of the graph running. Connecting
an unstarted graph segment to a started one will cause the started state to propagate into
the formerly unstarted region. A graph offering an unconnected stream can also be activated
by calling get or getAll and one with an unconnected port can be activated by calling put.
A graph that is moved to the running state because of put or get activity stays in that state
even though it is currently blocked waiting for more puts or gets to occur.

Note that the sole reference to the worker object in the case of sole-reference isolation is
created eagerly at the time the task expression is evaluated. Such creation is not delayed
until start time.

The start operation can throw a CyclicGraphException if the graph is found to be cyclic at
the time it is started. If a graph is already started at the point when a new connection causes
it to become cyclic, the exception may be thrown at that time. The start operation may
throw an UnschedulableGraphException if areas of the graph have provably divergent static
rates such that deadlock or resource exhaustion is inevitable. However, failure to throw that
exception does not mean that deadlock or resource exhaustion won’t happen. Variable rates
within the graph cause dynamic scheduling to be used such that, in general, it is impossible
to determine whether the result will be viable. The scheduling proceeds optimistically in
that case.

Starting an already-started graph is silently accepted without producing any exception.
Connecting two graph segments that were previously started is allowed (as long as no cycle
is created). This action can cause both graphs to temporarily pause while a new schedule is
calculated and then the resulting fused graph is restarted. Exceptions associated with start
can therefore by thrown at such a time.

The isRunning method of a task returns true if and only if the task is in the running
state.

A task enters the terminated state when an uncaught exception of any kind occurs during
the execution of the task’s worker method. By convention, sources are expected to indicate
“normal” termination by throwing lime.lang.Completion or one of its subclasses. Completion
is a subclass of RuntimeException which has the specific meaning of “normal termination” in
Lime. StreamUnderflow is a subclass of Completion which should be used when the proximate
cause is activity on streams; Completion or some more detailed subclass should be used when
the worker is functionally finished.

A task also enters the terminated state when it has at least one unconnected port and
the close() method of some port is called.

If a single task in a graph terminates for one of the preceding reasons, the termination
propagates in either an orderly or less orderly fashion depending on the reason for termina-
tion.

97

If the task terminates due an explicit close() on one of its ports or due to throwing
Completion or a subclass thereof, then termination is “orderly” as follows.

� Tasks whose ports are fed by the streams of the terminated task continue to execute
until all values produced by the terminated task have been consumed. Those tasks are
then considered to have undergone orderly termination and propagation downstream
continues.

� Tasks whose streams feed the ports of the terminated task are stopped as soon as
feasible. This is not precisely determined since they may be executing asynchronously.
As soon as a task is stopped as part of this rule, it is considered to have undergone
orderly termination and propagation upstream continues.

� a get operation on an unconnected stream of the terminated task will return normally
as long as there is data in the stream buffer. On the first execution in which there is
no more data, get throws StreamUnderflow.

� a getAll operation on an unconnected stream of the terminated task will return (nor-
mally) all of the data in the stream buffer, it being clear that no more is forthcoming.

It follows that a single Completion indication on a connected graph of tasks will cause all
the tasks to terminate eventually with queues drained to the extent possible. If the graph
has only one source and that source is the first to terminate, then the graph will terminate
precisely at the point when it would have stalled due to lack of data from the terminated
source. Otherwise, termination of the non-underflowed portions of the graph will be as soon
as feasible.

If the cause of termination is a Throwable that is not a Completion, the tasks of the graph
are each stopped as soon as feasible, generally upon return from their current execution.
This may leave some data on queues. Any outstanding get or getAll operation will return
with just the data available to it.

If more than one task moves from the running to the terminated state independently,
before the propagation of termination from one reaches the other, or if an exception happens
while task is “draining” its port queues, the result is non-deterministic and generally follows
the weaker guarantees of “abrupt” termination.

The rendezvous method will block the caller until the task is in the terminated state. The
return value of rendezvous is always the Throwable that caused termination, whether normal
or abrupt.

When a task is in the terminated state (only), the object providing its worker method
implementation may be retrieved (even if sole-reference isolation was used, it being now safe
to break the isolation since the task has terminated). The getWorker method, available only
on TerminalTasks will do one of these three things.

1. If the task is isolated and is not in the terminated state, an IllegalStateException is
thrown.

98

2. If the task is in the terminated state or is not isolated but represents the composition
of more than one primitive task or was created from a static method (ie it does not
have a single object containing its implementation) then null is returned.

3. If the task is in the terminated state and represents a primitive task created from an
entity other than a static method, then that entity is returned. As the entity might be
a value, such an entity will be returned in boxed form.

15.9 Constant Task Parameters

It is possible to supply constant values for some of the parameters of the worker method of
a task. In this case, the missing parameters are specified by their type, and the supplied
parameters are specified as expressions. The resulting input type of the Filter is then the
concatenation of the missing parameters. For instance, if the signature of the worker method
of a class Worker is

local int work(int a, double b, bit c);

then the following filters can be created:

Filter<`(int, double, bit), int> f0 = task Worker().work;
Filter<int,int> f1 = task Worker().work(int, 1.0, zero);
Filter<`(int,bit), int> f2 = task Worker().work(int, 1.0, bit);

15.10 Splitting and Joining

15.10.1 Joining Streams

The join operator takes a tuple or bounded array of streams and produces a single stream
of tuples or bounded value arrays consisting of the element-wise merge of the input streams:

Stream<int> s1;
Stream<double> s2;
Stream<`(int, double)> s3 = join `(s1, s2);
Stream<int>[2] t;
Stream<int[[2]]> tt = join t;

When multiple streams are joined, if one stream ends before the others, Stream−Underflow
is thrown.

15.10.2 Splitting a Stream

A stream of tuples or bounded value arrays can be split into multiple streams containing the
tuple elements or array elements by using the split operator.

99

Stream<`(int, double, string)> s;
`(Stream<int> is, Stream<double> ds, Stream<string> ss) = split s;
Stream<int[[2]]> tt;
Stream<int>[2] t2 = split tt;

The first assignment splits the stream into three streams. Note that when a stream is split,
if any one of the split streams is not consumed, then the other split streams may block.

Note also that when bounded arrays are employed these are necessarily bounded value
arrays when the array is the element type of a stream (these must be values) and bounded
non-value arrays when the element type is a stream (streams are not values and hence cannot
be the element type of a value array).

15.10.3 Splitters and Joiners

The split and join keywords apply only to streams, which means that using only these
operators to build a pipeline that has fan-out and fan-in can be inconvenient. Such a pipeline
would have to be connected incrementally, starting with the source, and finishing with the
sink, so that unconnected streams are always available to be split and joined. This makes it
is impossible to create and save intermediate pieces of the pipeline or write utility methods to
generate such pieces. To obviate this inconvenience, a more general mechanism is provided.
We start by noting that the actual splitting and joining is performed by system tasks, reified
by the following types.

public interface CompoundTask extends Task {
// Covers all Tasks that have more than one port or more than one stream

}
public interface Splitter<Tin extends Value,Touts> extends CompoundTask {

public Port<Tin> in();
public Touts outs(); // A stream 'cluster'

}
public interface Joiner<Tins,Tout extends Value> extends CompoundTask {

public Tins ins(); // A port 'cluster'
public Stream<Tout> out();

}

The Lime generic type system cannot express exactly the constraints unifying the type
parameters Tin and Touts or Tins and Tout. Rather, Lime treats most compound tasks
specially for type-checking purposes. To understand how this works, we need a definition.

A stream or port cluster is one of the following.

1. A tuple all of whose members are streams (for a stream cluster) or all of whose members
are ports (for a port cluster).

2. A bounded array whose element type is a stream or port.

100

The Tin type of a splitter or the Tout type of a joiner must be either tuple types or
bounded value array types. We call these types the “splittable” types. For each splittable
type there is a corresponding port cluster or stream cluster defined as follows.

1. If the splittable type is a tuple, the corresponding stream and port clusters are tuples
as well.

2. If the splittable type is a bounded value array, the corresponding stream and port
clusters are bounded non-value arrays.

3. The element type(s) of the streams (ports) that make up the corresponding stream
and port clusters are the same as the element type(s) of the original splittable type.

The Touts type of a splitter must be the stream cluster corresponding to the Tin type.
The Tins type of a joiner must be the port cluster corresponding to the Tout type. That is

Splitter<`(int, double),`(Stream<int>, Stream<double>)>

and

Joiner<Port<int>[2], int[[2]]>

are valid compound task types.
An instance of a splitter or joiner can be created with the operators task split Type and

task join Type. Although made up of two keywords, separated by arbitrary amounts of white
space, these should be thought of as single operations. The type must be a splittable type
as defined above.

Splitter<`(int, double),`(Stream<int>,Stream<double>)> aSplitter
= task split `(int, double);

Joiner<Port<int>[2], int[[2]]> aJoiner = task join int[[2]];

Note that Splitter and Joiner types have a very verbose syntax. For readability, it is
recommended to use Lime’s local type inference facility described in section 4 whenever
creating and initializing a variable of Splitter or Joiner type.

var aSplitter = task split `(int, double);
var aJoiner = task join int[[2]];

15.10.4 Other CompoundTask Types

The Splitter and Joiner are special cases of the CompoundTask with one side that is a cluster
and one side that is a simple port or stream. To complete the picture and permit Splitters
and Joiners to be used in meaningful combination, we define additional types as follows.

101

public interface MultiSource<Touts> extends CompoundTask {
public Touts outs(); // A stream 'cluster'

}
public interface MultiSink<Tins> extends CompoundTask {

public Tins ins(); // A port 'cluster'
}
public interface MultiFilter<Tins, Touts> extends CompoundTask {

public Tins ins(); // A port 'cluster'
public Touts outs(); // A stream 'cluster'

}
These task types always denote aggregate tasks: there are no user or system tasks (ie.

primitive tasks) that have these types.
The compound task creation operator task [...] is one way to create these task types.

var compoundFilter = task [(3) task foo];

// more flexibly, with N an ordinal type variable
var filters = new Filter<int, `(int,int)>[N];
for (N i) {

filters[i] = task foo;
}
var compoundFilter = [filters];

// more complex example
Source<double> doubleSource = task ... ;
Filter<double,boolean> booleanFilter = task ... ;
Sink<int> intSink = task ... ;
var multi = task [doublesource, booleanFilter, intSink];

Between the square brackets of a compound task creation are either

1. A comma-separated list of one or more task expressions optionally prefixed with repeat
counts (see section 12.5.1). As described earlier, repeat counts must be positive integral
compile-time constants.

2. A single expression without a repeat count denoting a bounded array of tasks.

If the expression contains commas or repeat counts it denotes a potentially heterogeneous
compound task. There must be at least two member tasks in that case. The elements must
be SimpleTask types (compound tasks and ClosedGraphs can’t be direct members of another
compound task). The member tasks may be a mixture of sources, sinks, and filters. The
resulting type is determined by aggregating the ports (if more than one) into a tuple and
aggregating the streams (if more than one) into a tuple.

If the expression does not contain commas or repeat counts it must be a bounded array of
some specific simple task type (Filter, Source or Sink, not the more general Task or SimpleTask
). The resulting type is will have a port cluster (if any) that is a bounded array of the same

102

length as the compound, and a stream cluster (if any) that is a bounded array of the same
length as the compound.

Because the actual size of a bounded array might depend on a type parameter, there is
no restriction that the single array in a compound task expression must have at least two
elements. However, the following should be born in mind.

� If the bounded array of tasks is restricted to always have a constant length of one, the
compiler may issue a warning.

� The degenerate case (a compound task with only one member) is not the same as a
simple filter. A “split-join” constructed using such a task may not perform as well
as a simple pipeline. That being said, the behavior should correctly generalize to the
width-one case.

The resulting type of a compound is determined as follows.

� If there is both a port cluster and a stream cluster, the type is a MultiFilter.

� If there is a port cluster and a single stream, the type is a Joiner.

� If there is a port cluster and no stream, the type is a MultiSink.

� If there is a single port and a stream cluster, the type is a Splitter.

� If there is no port and a stream cluster, the type is a MultiSource.

The four other combinations that involve no clusters in the result are impossible for the
following reasons.

� No ports and no streams: could only arise if the compound task could consist of a
single ClosedGraph but ClosedGraph members are not permitted.

� Single port or single stream: can technically happen if a compound task is made from
a length one array of Source or Sink; however, that is treated as a degenerate cluster
(an array of one element).

� Single port, single stream: similar to the previous in the case where it arises from a
length one array of Filter. Otherwise, it is ruled out by the following restriction.

The simple tasks making up a compound task must either be all Sources, or all Sinks,
or include at least one Filter. That is, it is illegal to build a compound task from a mixture
of both Sources and Sinks not including any Filter. Such a compound task, were it possible,
would have no meaningful dataflow; it it would simply be an arbitrary pairing of a (Multi)
Source with a (Multi)Sink. This restriction rules out the possiblity that a compound task of
more than one member could have just a single port and a single stream since, in that case,
both would have to come from its Filter and its other simple tasks must contribute at least
one more port or stream.

103

The rate of a MultiFilter or of a Splitter or Joiner constructed in this way is determined by
the rates of their actual filters. If the sources and sinks are isolated, they will be “passive”
and are either “pushed” or “pulled” at a rate commensurate with the Filters’ rates. However,
a non-isolated source or sink in this situation will have its own thread, just as in the simple
case.

15.10.5 Compound Connect Operations

Having created a splitter or joiner task using the task split or task join operators, and having
created compound tasks using the task [...] syntax, one might now legitimately ask how one
connects the resulting compound tasks. One can, of course, “pick apart” the stream and port
clusters and connect things individually. Using aSplitter and aJoiner from section 15.10.3,
consider the following.

Filter<double,int> aFilter = task Some.staticMethod;
aSplitter.outs().0 => aFilter.in();
aFilter.out => aJoiner.ins()[0];
aSplitter.outs().1 => aJoiner.ins()[1];

What you end up with is a set of task objects. The port aSplitter.in() and the stream
aJoiner.out() are unconnected, so, conceptually, what you have is a pipeline, which, for
purposes of modular composition, you’d like to represent as an object of type Filter<`(int,
double), int[[2]]>. But, Lime deliberately does not permit you to just create a Filter object
from an arbitrary port and stream. The motivation for this restriction is schedulability,
which is discussed in section 15.11.

There is a way out of this dilemma, but it (again, deliberately) does not work for the
irregular problem posed above. For illustration, suppose we have the following splitters and
joiners.

// aSplitter as defined above (splits `(int, double))
// aJoiner as defined above (joins (int[[2]]))
var splitter2 = task split double[[2]];
var joiner2 = task join `(double,boolean);

Then we have these methods.

int doubleToInt(double);
boolean doubleToBoolean(double);
double intToDouble(int)

We can now make these new filters.

var filter1 = splitter2 => task [(2) task doubleToInt] => aJoiner;
var filter2 = aSplitter => task [task intToDouble, task doubleToBoolean] => joiner2;

104

We were able to do this by exploiting the compound meanings of the => operator. The
=> operator can connect a wide variety of different task types. First, consider connections
involving the “simple” side of a Splitter or Joiner.

1. Filter => Splitter yields Splitter.

2. Source => Splitter yields MultiSource.

3. Joiner => Filter yields Joiner.

4. Joiner => Sink yields MultiSink.

5. Joiner => Splitter yields MultiFilter.

For the preceding connection forms to succeed the type argument of the stream of the
left-hand side must be convertable to the type argument of the port of the right-hand side.

Next, those CompoundTasks that have outs members can be connected to those with ins
members.

1. Splitter => Joiner yields Filter.

2. Splitter => MultiFilter yields Splitter.

3. Splitter => MultiSink yields Sink.

4. MultiSource => Joiner yields Source.

5. MultiSource => MultiFilter yields MultiSource.

6. MultiSource => MultiSink yields ClosedGraph.

7. MultiFilter => Joiner yields Joiner.

8. MultiFilter => MultiFilter yields MultiFilter

9. MultiFilter => MultiSink yields MultiSink

For a compound connection to succeed, the stream cluster represented by the outs member
of the left-hand side must have the same number of elements as the ins member of the right-
hand side. They need not be the same kind of aggregate (one may be a bounded array and
the other a homogeneous tuple). The elements must match one-for-one such that the type
argument of the stream is convertable to the type argument of the port.

Thus, there are certain constrained sequences that ultimately result in making new filters,
as well as many sequences that do not have that result. The ones that produce Filter results
require that splitters, joiners, and filter aggregates be assembled directly without picking
apart any split or joinable types of any splitters or joiners.

105

15.11 Schedulability of Task Graphs

The ability to split and join streams (or create splitter or joiner tasks) and to arbitrarily
connect the split-off streams in any fashion that you might desire (other than cyclically)
means that the sorts of graphs that might be produced are essentially arbitrary and many
such graphs are not viable (they will deadlock or stall due to unbalanced rates). When lack
of graph viability is detected during calculation of a static schedule, an exception might be
thrown, but, in many cases, the scheduler must optimistically assume that a graph is viable
unless proven otherwise. Such graphs often require dynamic dispatch mechanisms to sort
out all the possible execution sequences.

Efficient synthesis in hardware requires that the graphs be schedulable in as static fashion
as possible and it is also useful to know that a graph won’t deadlock and won’t stall until
it is ready to terminate. Consequently, Lime takes steps to “encourage” the creation of
schedulable graphs.

In particular,

1. Any Filter object, regardless of whether it is a primitive filter created with task or a
complex pipeline or “split-join” created with the simple or aggregate connect operator,
is individually schedulable.

2. Any graph consisting of a Filter object optionally connected to a single Source and
optionally connected to a single Sink is schedulable.

Other graphs certainly may be schedulable, and the Lime compiler and runtime will
make a best effort to discover whether an arbitrary graph, no matter how it was actually
constructed, is one that could have been constructed in accordance with the preceding rules.
However, for portions of a program that are intended to run with high efficiency in highly
parallel hardware, it is good practice to construct graphs explicitly in a way that guarantees
schedulability.

Note that, based on what we have said so far, not only will all Filter objects be schedulable,
but they will, in fact, always have a rate ratio of 1:1. The latter property will not hold in
general once we introduce rate matching in section 16.

15.12 New Grammar

See section 15.15 of the Java Language Specification for UnaryExpression and UnaryExpressionNotPlusMinus.
See also section 15.8 for Primary, 6.5 for AmbiguousName, section 4.1 for Type, 4.3 for ClassType,
15.9 for ArgumentList, and 15.17 for Expression. LimeBinaryOp is defined in section 5 of this
document. LimeExpressionList is defined in section 13 of this document.

UnaryExpressionNotPlusMinus ::= LimeTaskExpression
LimeTaskExpression ::= ’task’ StreamMethodDescription
StreamMethodDescription ::= ’value’ UnaryExpression

106

StreamMethodDescription ::= TaskFromOperator
StreamMethodDescription ::= Isolateopt StreamMethodId StreamMethodArgsopt

StreamMethodDescription ::= ’[’ LimeExpressionList ’]’
Isolate ::= IsolateDescriptor ’.’
IsolateDescriptor ::= Primary
IsolateDescriptor ::= AmbiguousName
IsolateDescriptor ::= IsolatingConstruction
IsolatingConstruction ::= ClassType ’(’ ArgumentListopt ’)’
StreamMethodId ::= IDENTIFIER
StreamMethodArgs ::= ’(’ StreamMethodArgList ’)’
StreamMethodArgList ::= TypeOrArg
StreamMethodArgList ::= StreamMethodArgList ’,’ TypeOrArg
TypeOrArg ::= Type
TypeOrArg ::= Expression
TaskFromOperator ::= ’{’ OperatorAsMethod ’}’
OperatorAsMethod ::= BinaryInstanceOpMethod
OperatorAsMethod ::= BinaryStaticOpMethod
OperatorAsMethod ::= UnaryStaticOpMethod
BinaryInstanceOpMethod ::= UnaryExpression LimeBinaryOp Type
BinaryInstanceOpMethod ::= UnaryExpression ’[’ Type ’]’
BinaryStaticOpMethod ::= Type LimeBinaryOp Type
BinaryStaticOpMethod ::= Type ’[’ Type ’]’
UnaryStaticOpMethod ::= LimeUnaryOp Type

See section 15.26 of the Java Language Specification. The following is replaced.

AssignmentExpression ::= ConditionalExpression
AssignmentExpression ::= Assignment

What replaces it is the following.

AssignmentExpression ::= LimeConnectExpression
AssignmentExpression ::= Assignment
LimeConnectExpression ::= ConditionalExpression
LimeConnectExpression ::= LimeConnectExpression ’=>’ ConditionalExpression

See section 14.8 of the Java Language Specification for StatementExpression. A LimeConnectExpression

is also a StatementExpression.

StatementExpression ::= LimeConnectExpression

107

The UnaryExpressionNotPlusMinus is further extended as follows.

UnaryExpressionNotPlusMinus ::= LimeSplitExpression
UnaryExpressionNotPlusMinus ::= LimeJoinExpression
UnaryExpressionNotPlusMinus ::= LimeSplitterCreation
UnaryExpressionNotPlusMinus ::= LimeJoinerCreation
LimeSplitExpression ::= ’split’ UnaryExpression
LimeJoinExpression ::= ’join’ UnaryExpression
LimeSplitterCreation ::= ’task’ ’split’ Type
LimeJoinerCreation ::= ’task’ ’join’ Type

108

Chapter 16

Rate Matching

So far we have only discussed how to create filters with a rate of 1:1. Indeed, all user-written
filters have a unit (1:1) rate. Non-unit-rate filters are created using rate matchers.

The key is that Lime permits homogeneous aggregates to be used as both the argu-
ments and return types of worker methods, so rate matching comes down to a problem of
aggregation, disaggregation and reaggregation. Consider the following two tasks:

static local bit bitMaker() {...}
static local void bitConsumer(bit[[64]] block) {...}
...
Source<bit> bitMaker = task bitMaker;
Sink<bit[[64]]> bitConsumer = task bitConsumer;
bitMaker.out() => bitConsumer.in(); // illegal: bit != bit[[64]]

We can’t connect these tasks directly even though they both deal in bits, because one
produces a single bit at a time while the other wants to consume 64 bits at a time. The
solution in Lime is simple:

bitMaker.out() => # => bitConsumer.in(); // works!

The match operator “#” creates a system filter (called a matcher) that only does ag-
gregation, disaggregation or reaggregation; composing this filter with other filters that do
computational work can then produce a rate-matched pipeline. Conceptually, the matcher
task (in this case) requires 64 put operations on its port before it will satisfy one get operation
on its stream (its rate is 64:1).

In the example shown, the “#” operator required no type information because it was
between two connect operators, providing unambiguous information about the input and
output types. More generally, the “#” operator is enclosed in parentheses with an optional
port type parameter written before it and an optional stream type parameter written after
it:

Filter<bit,bit[[64]]> bitRateMatcher = (bit # bit[[64]]);

109

Types may be elided only if the matcher is being immediately connected on the side
where the type is elided. If both types are elided, then the parentheses may be elided.

Because a matcher is only allowed to affect aggregation and has no basis for doing any
“deeper” conversions, there are some specific type rules relating a matcher’s port type pa-
rameter to its stream type parameter:

1. Any value type in Lime has a corresponding base value type.

(a) If a value type is not an array or a tuple, its base type is itself.

(b) The base type of an array is the base type of the array’s element type.

(c) The base type of a tuple is determined as follows.

i. If the base type of all the tuple’s members is the same type, then the tuple
is considered homogeneous and its base type is the common base type of its
members.

ii. Otherwise, the tuple is not homogeneous and its base type is itself.

2. All value types can be categorized as either fixed size, simple variable size, or complex
variable size.

(a) A homogeneous tuple or a bounded array whose elements are not fixed size is
complex variable size.

(b) An unbounded array whose elements are of the base type (no nested aggregation)
is simple variable size. Otherwise, the array is complex variable size.

(c) All other types are fixed size.

3. The port and stream type parameters of a matcher must have the same base type.
Note that if neither of these type parameters is an aggregate, then this means the
types must be the same, which is just a special case of the general behavior.

4. The stream type parameter of a matcher must not be complex variable size except in
the special case where the port and stream type parameters are identical.

While the tuple is mainly a heterogeneous construct, we support homogeneous tuples for
matching as a convenience since it is often clearer to write stream functions with a small
number of arguments of the same type, rather than using a bounded array argument.

The behavior of the matcher is as follows.

1. If the port and stream type parameters are the same and the size directive is not used
(see Section 16.1), the matcher behaves as an identity filter with a statically known
rate of 1:1.

2. Otherwise, each (possibly aggregate) value that is received on the matcher’s port is
treated as a sequence of one or more values of the base type for the purpose of “filling”
values to be provided on the matcher’s stream. All levels of aggregation are “flattened.”

110

(a) If the stream type parameter is simple variable size, then, there are two subcases.

i. If there is no size directive (see Section 16.1), then, for each value read from
the port, the entire sequence of base type values is provided. The rate is still
statically known to be 1:1.

ii. If there is a size directive, then, the matcher behaves as described in Sec-
tion 16.1) and the rate is not known statically.

(b) If the stream type parameter is fixed size, then the matcher buffers the sequence
of base type values internally and “doles them out” to the output values, releasing
output values only when full.

3. When the port type parameter is not fixed size but the stream type parameter is fixed
size or the size directive is used, then the rate of the matcher is not statically known.

4. When both the port type parameter and the stream type parameter are fixed size, then
the rate of the matcher is statically known although, in general, it is not 1:1.

16.1 Size Directives

It is possible to add a directive to a match expression which imposes a fixed output size
when (and only when) the output type is simple varying size. This size can be given by an
arbitrary positive integral expression (not necessarily compile-time constant). This is useful
when there will be a definite size at runtime but it is not known statically. The general
syntax for a size directive uses the contextual keyword size (which is not a reserved word
outside this one context).

var sizedMatcher = (float[[]] # float[[]], size 2*k);

The comma, the word size, and the expression following it appear within the parentheses
after the output type, or immediately after the “#” symbol if the output type is elided.

Since the size expression need not be constant, it follows that checking for illegal values is
dynamic and so there can be an IllegalArgumentException when the matcher is instantiated.
The example above would throw this exception if k<1.

This is only one of several optional comma-separated directives that are supported (in
addition to fill and shift as described in the following sections). When there is more than one
directive, they can be specified in any order. The presence of any directive causes the outer
parentheses to be required, even if both input and output type are elided.

16.2 Underflow Handling

When a matcher is buffering (ie, when the stream type is fixed size and the port type is
not the same size), then there is an ambiguity about what happens when an underflow is
detected on the matcher’s port when its buffer is not empty. As discussed in section 15.8,
Lime provides “orderly” drain semantics if underflow is detected “upstream” of a task before

111

any downstream tasks have terminated (buffered values should first be consumed before
underflow is propagated). To meet these semantics, a matcher must decide whether to
discard the partial buffer and immediately propagate underflow, or whether to provide one
last value before propagating underflow. However, the matcher can only provide one more
value if it has a way to fill out its partial buffer with pad values of some sort.

By default, the matcher will discard the partial buffer and immediately propagate un-
derflow. This behavior can be changed by using a fill directive in the “#” expression.

typedef bit3 = `(bit, bit, bit);
typedef bit5 = `(bit, bit, bit, bit, bit);
Filter<bit3,bit5> matcher1 = (bit3 # bit5);
Filter<bit3,bit5> matcher2 = (bit3 # bit5, fill);
Filter<bit3,bit5> matcher3 = (bit3 # bit5, fill 1b);

A fill directive with no following expression means that the buffer will be filled with the
default value of the base type. The optional expression following fill causes a different value
of the base type to be used. The expression need not be a constant expression. Note that
fill is not a reserved keyword in Lime but is reserved only in this context.

When the port of matcher1 underflows, it propagates the underflow immediately. In
contrast, matcher2 will first fill any partial buffer out with 0b values send it and matcher3
will fill with 1b values.

16.3 Shifting

Normally, a port consumes values from its connected stream using get semantics, not peek
semantics. Once a stream is connected, the explicit use of get and peek is no longer available.
However, in some cases it is desirable to examine more values than are consumed. A limited
peek operation on connected streams is optionally provided by a matcher along with (or
instead of) its aggregate-management responsibility. The relevant directive is called shift.
An expression is required following shift (the “shift count”) and it determines the number of
values consumed on each logical iteration, defined as follows.

1. Note that, due to aggregation, there is a difference between a physical get from the
supplying stream and a logical get from the internal buffer of the matcher; similarly,
there is a difference between a physical peek and a logical peek. The semantics of
shifting is defined in terms of logical get and peek operations; the actual getting and
peeking from the source stream is done conservatively and consistently with the logical
requirement.

2. Shifting is only available in matchers for which the stream type parameter is fixed size
or a size directive is used to impose a fixed output size. In either of those cases, the
matcher behaves as if it executes an indefinite number of logical iterations. In each
iteration, it does a number of logical get operations equal to the shift count, followed
by a number of logical peek operations equal to the output size minus the shift count.

112

The sum of these provides enough values to satisfy one output on the matcher’s output
stream.

3. Of course, due to data availability on the port, the logical iterations just described may
block somewhere in the middle. Lime does not specify exactly how the logical iterations
are scheduled (by “pushing from the port”, “pulling from the stream”, dedicating a
thread, etc).

For example, in the following code:

static local int f(int x, int y) { return x + y; }
void foo() {

Stream<int> s1 = { 1, 2, 10, 20 };
Stream<int> s2 = s1 => (#, shift 1) => task f;

}

the resulting stream s2 contains 3, 12, 30, whereas without the shift operator the result
would simply be 3, 30.

It is an error to shift by fewer than one or by more than the output size. It is vacuous
(though permitted) to shift by exactly the output size since, in that case, there will be no
logical peeking (permitting this is useful since, in general, both the shift and the size might
be dynamically determined). Since these restrictions can’t always be statically checked,
violations may result in IllegalArgumentException when the matcher is instantiated.

16.4 New Grammar

See section 15.12 of this manual for LimeConnectExpression. See section 4.1 of the Java
Language Specification for Type.

LimeConnectExpression ::= MatchExpression
LimeConnectExpression ::= LimeConnectExpression ’=>’ MatchExpression
MatchExpression ::= ’#’
MatchExpression ::= ’(’ PortItemTypeopt ’#’ StreamItemTypeopt MatchDirectivesopt ’)’
PortItemType ::= Type
StreamItemType ::= Type
MatchDirectives ::= MatchDirective
MatchDirectives ::= MatchDirectives MatchDirective
MatchDirective ::= ’,’ IDENTIFIER Expressionopt

The grammar for directives is supplemented by a check that only the prescribed directive
names size, fill, and shift are used in match expressions.

113

Chapter 17

Messaging

Sometimes the regular (and typically high rate) flow of information through a graph of tasks
must be supplemented by additional information whose characteristics are different. The
additional information appears irregularly or at a lower rate. The sender and receiver might
appear at very different parts of the graph and might even be upstream from the normal
data-flow. The messaging feature of Lime is designed to handle these cases.

Messaging can be thought of as a broadcast mechanism that allows two actors to com-
municate even though they have no direct data connection, as long as both are in the graph
(and meet some other restrictions to be described). The central mediating entity is a message
type which is declared using an interface with the message modifier. For example,

public message interface Change {
public void Change(int newState);

}
All of the methods of a message interface must return void, and all of the parameters

must be of value type. Typically, such an interface will have only one method but that is not
a requirement. Conceptually, a message interface represents a variant type whose cases are
its different methods. Each case consists of the tuple made up of that method’s arguments.
In the above example, the message interface is declaring one message type Change which
contains only a single integer. The methods of a message interface are considered to be
local; the local keyword is permitted but not required.

User tasks can specify that they can receive this message by implementing the message
interface in the class from which the task is created.

public class Receiver implements Change {
private int state = 1;

public local int receiver(int a, int b, int c) {
return (a + b + c) * state;

}

public local void Change(int newState) {

114

state = newState;
}

}
...
=> task Receiver().receiver =>
...

Methods used to implement message interfaces are local by default and will be checked
accordingly. The local keyword is permitted for clarity but not required. As we will see later,
the worker method and a message-receiving method will never be invoked concurrently so
there is no race condition possible.

Note that to make meaningful use of a message, the receiving task must be stateful,
meaning that it is sole-reference isolated and created using the form of task that specifies
construction explicitly. If the task is stateless, then running a message-receiving method
will not result in any discernible effect on any subsequent calls to the worker method. Lime
does not enforce the rule that a receiving task must be stateful, since isolation properties are
analyzed only when a task is created, not when a class is compiled. A stateless task imple-
menting a message interface is safe, albeit probably useless. Lime may issue a suppressable
warning if it can determine that this is happening.

Unlike the mechanism for indicating receiving of messages, a message sender is identified
at the method level rather than at the class level. Specifically, a message is sent by

1. indicating that a method is a sender for a message interface

2. calling a method of the message interface in the body of the method

3. making that method into a task.

The form of task isolation used for the sender is not important; stateless tasks can be
useful senders. Continuing with the above example, below is a sender that would send a
message that would be picked up by the above task. The sends clause indicates that the
method sender may send one or more messages from the Change interface with a delay of
2. If a zero delay is desired, one can either write @ 0 or omit that part of the clause. The
meaning of delays will be discussed in the next section.

public int sender(int a) sends Change @ 2 {
count++;
if (count == 4) Change(10);
return count;

}
...
=> task (...).sender =>
...

115

The sends clause on method declaration, if present, must come before the throws clause,
if present. One or more message interfaces, separated by commas may be listed. The
invocations of methods of a message interface are ignored and have no effect unless the
method is made into a task (even then, they may be ignored, as will be explained).

A method with a sends clause is not obligated to invoke a message method on every
invocation. In fact, if it does, it is probably abusing the message facility, which is designed
for occasional traffic, not high volume traffic. Lime may issue a warning if a method that
indicates use of a message interface in fact never uses it. The method is also not required
to invoke each of its message interfaces at most once per activation. However, if it invokes a
particular message interface more than once, only the last invocation will have any effect.

It is an error if more than one interface mentioned in a sends clause defines the identical
method (as denoted by its name and argument types). This restriction sidesteps the issue
of overlapping message interfaces.

Because the sends clause imposes such a weak obligation, and only needs to be considered
when a method becomes the worker method of a task, the sends clause is only accepted
on concrete method declarations, not abstract methods. This differs from throws, which
requires strict checking.

17.1 Timing of Message Delivery

The timing of message delivery is probably the trickiest part of the semantics. Since the
task graph is acyclic, for any two nodes in the task graph, there may exist directed paths
from one to the other. If there are no such paths, we disallow messaging and the exception
IllegalMessageException will be thrown at run-time if such a messaging is attempted. In the
other case, the receiver will be either downstream or upstream from the sender and we then
correspondingly call such a message downstream or upstream. Because the graph is acyclic,
multiple task graph paths will be in the same direction though possibly of differing lengths.

17.1.1 Downstream Messaging

If a receiver is downstream from a sender, then there is one or more dataflow paths from the
sender to the receiver. Each dataflow path can be thought of as potentially providing a sort
of timing mechanism by which we can synchronize the timing of message delivery. Multiple
dataflow paths can be reconciled by preferentially selecting the shortest path.

We can give a precise operational semantics on the timing through a tagging mechanism.
On the iteration that a sender messages one or more downstream receivers, we tag the output
that is generated by the sender with a newly generated tag corresponding to the message.
Thereafter, that tag will remain on that data item and stick to any computation and result
on which that data item participates in. The stickiness is conservative and applies regardless
of whether the filter actually uses a data value by treating all tasks as black boxes. Thus the
tag will flow through the task graph in a downstream manner and will eventually reach the
receiver. Because there are potentially multiple paths connecting the sender and receiver,

116

Receiver

Sender

Receiver

Sender

Sender

Receiver

Downstream Illegal Message Upstream

Figure 17.1: Different Messsage Types

the receiver may observe this tag multiple times. We choose the first time that the receiver
observes this tag as the moment that corresponds to the tagging at the sender side. When
a tag is first observed by a receiver of that message type, it will react to the message prior
to running its worker method.

In the example in figure 17.2, we have put the sender and receiver examples from above
and placed it into the depicted graph. We have modified the latency on the sender to a
latency of zero for this example. That is, the clause @ 3 should be replaced by the clause
@ 0. In this example, we see that there are multiple paths from the sender to the receiver
but the tagging mechanism will naturally discover the dynamically shortest path. We say
”dynamically” because there there may be variable rate filters intervening and so it is not
possible to always state which path will be the one taken. The tag flows through the
intervening filters in a straightforward way where each output has the same tag as the input
(regardless of the internal logic of the filter). When a splitter encounters a tagged data item,
the tag is replicated and each output item is tagged by the tag on the incoming data item.
A joiner behaves similarly and puts all the tags of its inputs onto its sole data output which
can end up with multiple tags. In this example, because the same tag is showing up in the
inputs, the duplicate tags are collapsed. Finally, note that the receiver will only respond
to the tag only on the initial receipt and so the same tag on the final iteration is ignored
and not even propagated. In general, propagation other than of the initial receipt is not
necessary since the earlier tag must have already been propagated based on the treatment
of all tasks as black boxes.

In general, a message can be sent with any non-negative constant integral delay. Consider

117

Rec (s = 1)

Sender
4

Rec (s = 1)

Sender
5

4 4
4

Rec (s = 1)

Sender
6

4 4

4

5 5
53

33

3

33

(2, 2, 3)

33

 7
Rec (s = 1)

Sender
7

5 5

5

6 6
6

(3, 3, 4)

44

 100
Rec (s = 10)

Sender
8

6 6

6

7 7
7

(4,4, 5)

552-2

(1, 1, 2) (0, 0, 1)

1 4

Will be
Ignored

About to be
processed

Figure 17.2: Downstream Messaging Example

the original example where the message was sent with a delay of 2. The timing is determined
as before through a tagging scheme except that the tagging of the data item at the sender
is delayed by 2 iterations. This feature is provided as a convenience as the delay can be
entirely implemented by buffering in user code from the sender’s work method. Figure 17.3
shows the same example with the delay.

Rec (s = 1)

Sender
(delay 2)

4

Rec (s = 1)

5

4 4
4

Rec (s = 1)

6

4 4

4

5 5
53

33

3

33

(2, 2, 3)

33

 19
Rec (s = 1)

9

9 9

9

10 10
10

(7,7,8)

8 8 2-2

(1, 1, 2) (0, 0, 1)

1 4

Sender
(delay 1)

Sender Sender

.....

 220
Rec (s = 10)

10

10 10

10

11 11
11

(8,8,9)

9 9

Sender

Figure 17.3: Downstream Messaging Example with Delay

17.1.2 Upstream Messaging

Because data flows downstream, the tags that represent messages also flow downstream and
cannot be directly used to synchronize a sender to a receiver as before. Nevertheless, the
path(s) connecting the upstream receiver to the downstream sender can establish synchro-
nization by having the upstream receiver pre-emptively and continuously tag all data items
that it generates. This stream of tags will, in the same order though possibly with gaps, be

118

observed by the downstream sender. When the sender issues a message, it does so after hav-
ing observed the most recent tag from the receiver. (Note that a sender can observe multiple
tags from the same upstream receiver per iteration.) Assuming a delay of 0, the message
should be delivered immediately before the sender invocation that would generate the next
tag. We consider this case to be a delay of 0 since this is the soonest that a message can be
delivered. Whenever there is a potential that a zero delay upstream message might be sent,
the timing semantics prevents the upstream receiver from running ahead of the downstream
portions of the graph at all since the potential message send must be processed first. This
constrains scheduling but may be required to implement a tight feedback loop such as an
IIR filter. We need a slightly different sender and receiver to give an example of upstream
messaging using the same task graph we have been using.

public class Receiver implements Change {
private int count = 1;
public local int receiver() {

state++;
return state;

}
public local void Change(int newState) {

count = newState;
}

}

public class Sender {
private int count = 0;
public int sender(int a, int b, int c) sends Change @ 0 {

count++;
if (count == 1) Change(10);
return a+b+c;

}
}

In the earlier figure showing downstream messaging, we run every task as we go from
one program state to the next since it is intuitive for high performance to extract maximal
parallelism from the task graph. However, if we use this schedule, as shown in Figure 17.4,
proper delivery of the message will be impossible. By the time the sender has sent the mes-
sage, it is trying to deliver the message such that the receiver generates the data item tagged
with the blue square (since the blue square immediately follows the red circle). However,
the receiver has already run several iterations beyond this point.

In order for the upstream message to be delivered with zero delay, all upstream com-
ponents between the sender and receiver cannot have run. This results in running things
only when needed to provide data to downstream tasks. The resulting schedule is shown in
Figure 17.5 where each time step corresponds to running only one stage of the task graph.
When the message is being sent at the penultimate time step, the receiver has not run be-

119

Sender
(c = 0)

Rec
(s = 1)

1

Sender
(c = 0)

2

1
1

Rec
(s = 2)

Sender
(c = 0)

3

2
2

Rec
(s = 3)

1

1

Sender
(c = 0)

4

3
3

Rec
(s = 4)

2

2
11

(1, 1)
Sender
(c = 0)

5

4
4

Rec
(s = 4)

2
3
2

3

Futilely
looking for

Figure 17.4: Upstream Messaging Example with overly eager schedule

yond the iteration that generated the tag (red circle) associated with the message and so
it is able to receive the message just before the iteration that would generate the next tag
(blue square).

(1,1)
Sender
(c = 0)

Rec
(s = 1)

1

Sender
(c = 0)

Rec
(s = 1)

Sender
(c = 0)

Rec
(s = 10)

Send
message just
before next

iteration

10

Sender
(c = 0)

1
1

Rec
(s = 1)

Sender
(c = 0)

Rec
(s = 1)

1

1

Sender
(c = 0)

Rec
(s = 1)

1
1

Figure 17.5: Upstream Messaging Example with lazy schedule can handle zero delay

Upstream messages can be also sent with a positive delay d. Like downstream messages,
the delay has the effect of delaying the message send at the sender side by d iterations.
For example, if we had sent the upstream message with a delay of 4, then the schedule in
Figure 17.4 would have worked because we would be targeting the tag just after the black
diamond tag. Since the receiver had just generated the black diamond tag, we are just in
time to deliver the message. The delay of 4 corresponds to the length of the longest path
connecting the receiver and sender.

120

17.1.3 Unspecified Delay

As just shown, messaging with specified delays corresponds to message deliveries at a precise
iteration. This means that the regular dataflow must be tightly coupled with message flow
so the runtime implementation of the latter is somewhat hampered by whatever choices may
have been made in the former. In addition, upstream messaging can restrict the scheduling of
the tasks because the upstream message can put all connecting paths into lockstep iteration.
However, there are situations in which the application logic makes the timing irrelevant to
the correctness of the algorithm. Typically, the algorithm only requires that the message
is delivered reasonably soon. For example, algorithms in which a work queue is initially
populated but can be further populated by internal computations would fit this pattern as
long as the work items are independent. Such an application might be modeled by a graph in
which some designated task representing the work queue can receive messages (work items)
from any other task. The independence of the work items means that it does not matter
when the work queue task receives work item messages as long as they are received at some
point. Eventual receipt is necessary to ensure that all work items are completed before
termination.

Using the example from above, the sender would indicate an unspecified delay with a
question mark as follows

public class Sender {
...
public int sender(int a, int b, int c) sends Change @ ? {

...
}

}

The use of an unspecified delay is encouraged as it frees the runtime to use a more efficient
implementation. For example, messages with unspecified delays destined for a particular
receiver can be added to a buffer whose contents can be delivered asynchronously and in
bulk to the receiver. We can even have multiple buffers for the same receiver as there is not
a guarantee of the message ordering when the delay is unspecified.

17.1.4 Matchers

In our examples, each tag was associated with a single value and there was no ambiguity
about when a particular tag was being propagated. However, matchers can consume and
generate multiple values per iteration and so there is potential confusion about how tags are
treated as they pass through matchers. For simplicity, we use the rule that a tag flows out
of the matcher on the same iteration as when it flowed into the matcher. That is, we treat
matchers no differently than if it was a regular task. This means that although matchers
do not change base values, it may move the tag away from the output value containing the
base value originally held the tag upon input.

121

17.1.5 Discussion

The example of upstream messaging in Figure 17.5 shows that a delay of zero corresponds
to the earliest possible delivery as constrained by causality. That is, regardless of implemen-
tation details like scheduling of tasks, the delivery of the message cannot happen any sooner
that the iteration corresponding to zero delay. However, for the downstream case, we can
buffer results to an arbitrary degree so that the receiver can be running an iteration that
is arbitrarily earlier than the one by the receiver. Thus, the sender can seemingly send a
message back in time leading to a possible extension of delays to negative values. However,
we do not allow this case because of the complexity in the programming model and imple-
mentation details. It is also not obvious what the use case would be that would motivate
this addition.

Although we restrict delays to be constant, nothing in the definition of message timing
requires compile-time constancy. In practice, knowing the actual delay can greatly facilitate
optimal scheduling. In particular, if there is a possibility of an upstream message with
variable delay, then a portion of the graph must be run in lockstep which precludes parallel
execution. This is a feature we may add in the future.

In general, better performance is obtained by using the weakest constraint. Whenever
possible, use an unspecified delay. Otherwise, larger delays are better than smaller delays.
If we add variable delays, it is still preferable to use constant delays where possible.

17.2 Java Compatibility

The semantics of the message interface type is not understood by Java. However, classes
that implement such interfaces can be passed to Java. The interface is seen by Java as an
ordinary interface and the receiving methods as ordinary methods.

Classes with methods that have sends clauses can be passed to Java. Both the sends
clauses and all invocations of sending methods are compiled by Lime in a way that causes
these invocations to have no effect outside of a task graph. Thus, Java invocations of methods
with sends clauses are well-defined, it is just that the sending will have no effect.

17.3 New Grammar

See section 9.1.1 of the Java Language Specification for InterfaceModifier.

InterfaceModifier ::= ’message’

See section 8.4.1 of the Java Language Specification for MethodHeader. The original defi-
nition is as follows.

MethodHeader ::= MethodModifiersopt TypeParametersopt ResultType MethodDeclarator

122

Throwsopt

The definition is altered as follows. See section 4.3 of the Java language specification for
InterfaceType.

MethodHeader ::= MethodModifiersopt TypeParametersopt ResultType MethodDeclarator
LimeSendsopt Throwsopt

LimeSends ::= ’sends’ MsgInterfaceList
MsgInterfaceList ::= MsgInterface
MsgInterfaceList ::= MsgInterfaceList ’,’ MsgInterface
MsgInterface ::= InterfaceType
MsgInterface ::= InterfaceType ’@’ DelaySpecification
DelaySpecification::= ConstantExpression
DelaySpecification::= ’?’

123

Chapter 18

Collective Operations and Reductions

18.1 Collective Operations

Collective operations are the application of an operation across all elements of a collection,
yielding a new collection with the resulting values. Arrays and the standard lime.util col-
lections support collective operations, as well as other types like string. User-defined classes
may also support collective operations by implementing the Indexable interface and one or
more of the Collectable, ValueCollectable, or ReflexiveCollectable interfaces.

The “@” character indicates a collective operation. Collective operations may be applied
to operators, instance methods, and static methods. On infix and prefix operators, the “@”
precedes the operator. On instance method calls, the “@” takes the place of the “.” in the
method call.

Collective operations may be used with methods of any number of parameters, and the
parameters may be a combination of either Indexable collections of the parameter type,
or single instances of the parameter type. In the latter case, the parameter expression is
evaluated exactly once and used as the argument of every individual operation.

For example:

string[] v1 = { ”foo”, ”bar” };
string[] v2 = v1@toUpperCase(); // v2=={”FOO”, ”BAR”}

int[] a1 = { 1, 2, 3 };
int[] a2 = { 0, 0, 0 };
int[] a3 = a2 @+ 1; // a3=={ 1, 1, 1 }
int[] a4 = a3 @+ a1; // a4=={ 2, 3, 4 }

If the collections are not of the same size, a DomainConformanceException is thrown.
The ability to mix Indexable and scalar parameters interacts with method resolution in

the presence of multiple methods of the same name. As in standard Java method resolution,
a method whose arguments match exactly is preferred over one that requires an upcast or
widening conversion. If there is more that one inexact match, the expression is ambiguous
and a compile-time error is indicated. Sometimes, a particular argument might be interpreted

124

as both a scalar and an indexable; for example, string implements Indexable but may be a
scalar participant in an operation involving (for example) an array of strings. An Indexable
match is considered less exact than a scalar one (the less surprising choice in common cases
like those involving strings), so there are generally more ways that a method call can be
ambiguous when it is collectivized.

In order to be eligible for collective operations, the collection must implement the follow-
ing interfaces:

// Required
public universal interface Indexable<I extends Value, E> {

local E this [I index];
local Iteratable<I> domain();

}

// Required unless one of the extended forms used
public universal interface Collectable<I extends Value> {

local <E> Collector<I, E> collector();
}

// Optional (use if value results are to be handled distinctly)
public universal interface ValueCollectable<I extends Value>

extends Collectable<I> {
local <E extends Value> Collector<I, E> valueCollector();

}

// Optional (use if results that match the Collectable collection's
// element type are to be handled distinctly)
public universal interface ReflexiveCollectable<I extends Value, E>

extends Collectable<I> {
local Collector<I, E> reflexiveCollector();

}
The Indexable interface specifies that the collection has some index type I and an indexing

operator which returns an object of the element type E. Furthermore, it has a domain()
method which returns an object which allows iteration over all of the valid indices of the
objects contained in the collection.

The Collectable interface provides a method that returns a collector. A collector is an
object that is used to gather the results together to produce the new collection resulting
from the operation. There are up to four ways to design a collection to handle collective
operations.

1. If the same kind of result collection is to be used regardless of the result type of the
per-element operation, then the simple Collectable interface is sufficient. Note that this
result type bears no necessary resemblance to the element type of the collection as it
depends on the operation that is collectivized and all of the operands.

125

2. To use a different result collection type for value per-element results and non-value
per-element results (so that the entire collection can be made into a value in the case
of value results) use the ValueCollectable interface. This option adds a distinct method,
valueCollector() which is called if and only if the result of the per-element operation is
a value type. Lime value arrays implement ValueCollectable so that they can return
instances of themselves parameterized by the result value type when the result is a
value type.

3. To use a distinct collection type for per-element results that exactly match the type of
the original collection, use the ReflexiveCollectable interface. This option adds a distinct
method reflexiveCollector() which is called if and only if the result of the per-element
operation exactly matches the collection’s element type. The string class implements
ReflexiveCollectable so that it can return a string rather than the more general char[]
when the per-element operation produces a char result.

4. It is possible to implement both ValueCollectable and ReflexiveCollectable to obtain up
to a three-way distinction in the kinds of result collections produced.

The I (index) parameter of both the Collectable and Indexable interfaces implemented by
a collection must be the same type. In addition, if ReflexiveCollector is implemented, the E
(element) parameter of both the ReflexiveCollector and Indexable interfaces must be the same
type.

The collector provided by any of the three kinds of Collectable collections must implement
the Collector interface:

public universal interface Collector<I extends Value, E> {
void this [I index](E val);
Indexable<I,E> result();

}
The indexed store operation allows the individual results to be collected, and the result()
method returns a new collection which must also be Indexable. The precise implementation
of Indexable is jointly determined as follows.

� The generic type of the Indexable is determined by the Collector implementation, which
is, in turn, determined by the collector() or valueCollector() or reflexiveCollector() im-
plementation.

� The parameter I (the index type) is the same as that of the original collection since it
is passed through at every step.

� The element type E is the same as that with which the Collector was instantiated,
which was in turn set by the compiler to be equal to the result type of the element-
wise operation.

The semantics of a collective operation dst = src1@foo(src2) (of type C, element type E
and index type I) are given by the following expansion:

126

if (! src1.domain().equals(src2.domain())) { throw new
DomainConformanceException(); }

Collector<I,E> tmp = src1.collector(); // or valueCollector() or reflexiveCollector()
for (I index: src1.domain()) { tmp[index] = src1[index].foo(src2[index]); }
C dst = tmp.result();

The single evaluation of any scalar arguments occurs conceptually before any of the code
shown above, so side-effects during those evaluations can affect the creation of the collector
but not vice versa.

The other collective parameters of a collective operation need not implement Collectable,
but only Indexable.

For the most part, Lime’s provided classes are implemented and checked exactly as so-far
described, but there are additional issues when bounded arrays are involved.

1. If any participant in a collective operation is a bounded array, then all such participants
must be scalars or else bounded arrays of the same size (thus, the DomainConformanceException
can’t arise in the bounded case).

2. In the bounded case as just described, the result will also be a bounded array of the
same size.

Static methods can also be used as collective operations. In this case, the @ character
is placed before the Collectable parameter whose Collector will be used to gather the result.
For example:

int a5[] = Math.max(@a1, { 99, 1, 1 }); // a5=={99,3,4}
int a6[] = Math.max(9, @a5); // a6={99,9,9}
string s1 = ”fooBAR”;
static char flipCase(char c) {

return Character.isLowerCase(c) ? Character.toUpperCase(c) : Character.
toLowerCase(c);

}
string s2 = flipCase(@s1); // s2==”FOObar”

More generally, collective operations can be applied, for example, to hash tables with the
same key sets (that is, the results of their domain() methods will compare to be .equals()).
Thus if two hash tables x and y contain {(”foo'', 1), (”bar”, 2)} and {(”foo”, 10), (”bar”, 10)}
then the result of x @+ y is {(”foo”, 11), (”bar”, 12)}.

18.1.1 Data Parallelism

When supported by the underlying target architecture, and when it can be done without
changing the program semantics, collective operations will under certain circumstances be
implemented in a manner that takes advantage of parallel operation.

127

The parallel behavior is expected to obtain with a high degree of predictability (assuming
support from the underlying platform) when all of the following are true. Note that any
implementation is free to perform a larger set of operations in parallel.

� The element types of the collections are values

� The iterated operation is either one between primitive types or else the method that
implements it is inherently isolated as defined in section 15.3.1.

� The Collector implementation does not depend on the order in which calls to its indexed
set operations are made, and it is safe to make those calls concurrently.

The first two properties are readily verified both by the programmer and by the compiler.
The third property is readily understood but the compiler’s check is necessarily conservative.
A Collector that

1. uses a Lime array to store values

2. directly translates its own index type (a bounded type or int) into an array index
without arithmetic and

3. performs no other actions in its indexed set method

will be recognized as order-independent. The provided Collector implementations for the
arrays themselves have this property.

18.2 Reduction

Lime also provides facilities for performing reduction, namely applying a binary operator
across the elements of a collection to generate a single result of the element type.

Reduction can be applied to any Iterable class, although it is recommended that classes
instead implement Iteratable; otherwise the reductions will not be available in local methods.

Either instance or static methods can be used for reduction. In either case, they must
apply to two arguments of the same type and produce a result of that type. Thus an instance
method of a class T must have the signature T foo(T) and a static method must have the
signature T foo(T,T).

A reduction is indicated by the use of @@. For example:

int[] a = { 1, 2, 3 };
string[] fooletters = { ”f”, ”o”, ”o” };
// reduction with binary operators:
int sum = (@@+ a); // sum==6
string foo1 = @@+ fooletters; // foo1==”foo”
// reduction with instance methods:
string foo2 = fooletters@@concat; // foo2=”foo”
// reduction with static methods:
int max = Math.max(@@a); // max==3

128

If a reduction is applied to zero items, an EmptyReductionException is thrown. That is,
the semantics of @@+ a above is ((1 + 2)+ 3) and not (((0 + 1)+ 2)+ 3).

18.2.1 Optimization

If the class being reduced also implements Indexable, the compiler may optimize the operation
using various parallel reduction techniques. However, such optimizations will only be applied
if the operator in question is annotated with @Axioms({associative}). Specifying commutative
as well will expose further optimization opportunities.

In a local method, the compiler is restricted to use a deterministic parallel evaluation
strategy.

.

18.3 Java Compatibility

There are no new types introduced in this section and hence no implications for Java Com-
patibility. Collective operations don’t arise in Java code, but there is no restriction on their
use in Lime methods that might be called from Java code.

18.4 New Grammar

We first revise the definition of MethodInvocation in section 15.12 of the Java Language
Specification to the following semantically equivalent definition.

MethodInvocation ::= SimpleMethodInvocation
MethodInvocation ::= NamedParameterizedMethodInvocation
MethodInvocation ::= DottedMethodInvocation
SimpleMethodInvocation ::= Name ’(’ ArgumentListopt ’)’
NamedParameterizedMethodInvocation ::= Name ’.’ TypeArguments

IDENTIFIER ’(’ ArgumentListopt ’)’
DottedMethodInvocation ::= MethodReceiverNotName ’.’ TypeArgumentsopt

IDENTIFIER ’(’ ArgumentListopt ’)’
MethodReceiver ::= Name
MethodReceiver ::= MethodReceiverNotName
MethodReceiverNotName ::= Primary
MethodReceiverNotName ::= ’super’

We define ArgumentList using the revision shown in section 12.9 of this manual, which
defines the ArgumentExpression production.

We then define the collective operations and reductions as follows. See the Java Lan-
guage Specification for TypeArguments (4.5.1), Expression (15.27), UnaryExpression (15.15),

129

and MultiplicativeExpression (15.17). See section 5.4 of this manual for LimeUnaryOp and
LimeBinaryOp.

MethodInvocation ::= LimeCollectiveMethodInvocation
MethodInvocation ::= LimeReducingMethodInvocation
ArgumentExpression ::= LimeCollectorArgument
ArgumentExpression ::= LimeReducerArgument
LimeCollectiveMethodInvocation ::= MethodReceiver ’@’ TypeArgumentsopt

IDENTIFIER ’(’ ArgumentListopt ’)’
LimeReducingMethodInvocation ::= MethodReceiver ’@@’ TypeArgumentsopt IDENTIFIER
LimeCollectorArgument ::= ’@’ Expression
LimeReducerArgument ::= ’@@’ Expression
LimeUnaryCollectiveOperation ::= ’@’ LimeUnaryOp UnaryExpression
LimeReduction ::= ’@@’ ReductionOp UnaryExpression
ReductionOp ::= LimeBinaryOp
LimeBinaryCollectiveOperation ::= MultiplicativeExpression ’@’ LimeBinaryOp UnaryExpression

130

Chapter 19

The “Closed World” Model

The Lime language, like Java, supports separate compilation and dynamic class loading: no
closed world is assumed in the language as a whole. However, a stated purpose of Lime is to
support synthesis of code into hardware. In hardware, at least in the near term, there is no
dynamic class loading and limited capacity to consume arbitrary class metadata. This can
make it problematic to use non-final types in hardware, when the set of possibly extenders
or implementers of the type is open-ended. In the absence of any hints from programmers,
many programs that would otherwise be synthesizable in hardware may end up running in
software.

Thus, Lime supports “closing the world” around parts of a class hierarchy to ensure
that hardware synthesis will be possible. The support takes the form of an extendedby
keyword, which follows after the standard Java extends and/or implements clauses of class
and interface declarations.

public interface Animal extends Comparable extendedby Cat, Dog {
...
}
public final class Cat implements Animal {
...
}
public class Dog implements Animal extendedby Hound, Poodle {
...
}

When an extendedby keyword is present on a type, the following consequences follow.

1. Exactly the types listed must exist and must directly extend or implement (as appro-
priate) the present type.

2. No other types may extend or implement the present type.

3. An extendedby clause may not require a cycle in the type hierarchy (such cycles are
already illegal in Java and Lime).

131

It is the expected practice that a type named in an extendedby clause but that does not
itself have an extendedby clause will be final. If this practice is not followed, the compiler
will issue a suppressable warning that the type extension subhierarchy is not closed.

We can now state the closed world model for hardware synthesis a little more precisely.

1. A closed type is a type that is either final or has an extendedby clause such that all
of its possible extenders are closed types.

2. The initial types of a task are the type declaring its worker method plus the type of
any curried arguments to that worker method.

3. A synthesizable realm consists of a set of Lime tasks that are connected to form a
graph. The graph may be a subgraph of a larger one.

4. The entry types of a synthesizable realm are the types of any ports of tasks of the
realm that are not fed by other tasks of the realm, plus the initial types of all the tasks
in the realm. Note that types created inside the realm (via the new operator) are not
considered entry types: their exact types are always statically known. Note also that
reflection (e.g. Class.forName) is not available in hardware.

5. A synthesizable realm is a closed world if all its entry types are closed types and there
are no reflective object creations.

It is never an error to write a Lime program that does not use extendedby. Once
extendedby is used, it must be used correctly as defined above. The closed world model will
then affect what is synthesized to hardware.

19.1 New Grammar

See section 8.1 of the Java specification for NormalClassDeclaration, section 9.1 for InterfaceDeclaration,
and section 4.3 for ClassOrInterfaceType. The original productions as modified in section 2
of this document are further modified as follows.

NormalClassDeclaration ::= ... ’class’ ... Interfacesopt ExtendedByopt

InterfaceDeclaration ::= ... ’interface’ ... ExtendsInterfacesopt ExtendedByopt

ExtendedBy ::= ’extendedby’ ClassOrInterfaceTypeList
ClassOrInterfaceTypeList ::= ClassOrInterfaceType
ClassOrInterfaceTypeList ::= TypeList ’,’ ClassOrInterfaceType

132

Chapter 20

Java Compatibility

20.1 Source Compatibility with Java

Except for certain exceptions, a legal Java program is a legal Lime program. The deviations
fall into two categories: lexical and semantic.

20.1.1 Lexical Issues: Keywords

A legal Java program might not be a legal Lime program for purely lexical reasons, because
Lime reserves many words that are not reserved in Java. For example, task is a reserved
word in Lime but might be an identifier in some Java programs. All such problems can be
fixed by renaming variables, without loss of meaning from the original Java.

When importing Java code into Lime, the back-tick character “`” can be used to prefix
a Lime keyword that should be treated as a Java identifier. For instance, split is a keyword
in Lime. However, it is used in Java as the name of a method of the String class. To invoke
this method from Lime:

String s = ...;
String[] pieces = s.`split(”/”);

The identifier “ ” (that is, a single underscore), is a legal Java identifier but is reserved
in Lime (see Section 13.2). It can also be named using “` ”.

20.1.2 Semantic Issues

Three constructs of Java (generic types, generic methods, and arrays) are given expanded
semantics in Lime, such that the same syntax has an expanded meaning. Because the Lime
definitions are a supertype of the Java ones, it often just works to take Java code as is and
compile it as Lime code. However, this is not guaranteed for at least two reasons. First,
Java generics permit some type correctness “cheating” through the use of raw types and
unchecked conversions. If a program depends on these, it may fail in the stricter checking

133

environment of Lime. Second, there may be untranslated Java code with which a Lime
program must interoperate.

The tilde escape character “˜” immediately before the declaration of generic type pa-
rameters or generic method parameters, or before the opening square bracket of an array
declarator, indicates a Java compatible generic type, generic method, or array, respectively.
Examples are shown in sections 2 and 12. Note that code that is separately compiled with
a Java compiler is automatically recognized as Java and not Lime; it is not necessary to
recompile such code with a Lime compiler using tilde escapes.

20.2 Binary Compatibility with Java

Previously we considered the case where a Java source program was compiled using a Lime
compiler. Here we consider the case where the Java source files were previously compiled by
a Java compiler and exist only as class files.

Lime is binary compatible with Java in the sense that a Lime main program can directly
or indirectly load and instantiate Java classes and invoke their methods. The opposite
behavior is not guaranteed. That is, a Java main program cannot load and instantiate Lime
classes.

When a Lime program passes reference arguments to a Java class, it is possible that
the methods of some Java class will end up calling the methods of Lime objects. Correct
behavior is only guaranteed when those Lime objects fall into a certain compatible subset of
Lime. This compatible subset is defined in terms of types (only the type of the object and
the types of its visible fields and methods matter in deciding whether it is safe to pass to a
Java method, not what its methods may happen to do internally).

Throughout this manual we identify, for each Lime innovation that affects the type sys-
tem, whether or not the resulting type is Java-compatible.

20.3 Gotchas

There are a few corner cases regarding Java compatibility that cause surprising behavior,
some of it not realized until run-time. Here we try to enumerate these situations so they can
be avoided.

20.3.1 String Equality

A problem arises when string and String types are mixed and treated as Object types. As
described in Section 11.1.2, a Java String will not compare as .equals() to the corresponding
Lime string. In addition to the potential problems with individual variables, if a collection
is used with Object element type, unexected behavior may occur. In particular,

134

var set = new HashSet<Object>();
string foo1 = ”foo”;
set.add(foo1); // succeeds
set.add(”foo”); // literal has type java.lang.String; succeeds

will produce the (probably) unexpected result of a set with two copies of ”foo”.

20.4 The pH Tool

There are certain cases where binary compatibility with Java can be substantially enhanced
by selectively adding certain Lime modifiers to existing Java classes, interfaces, enums, and
methods. The pH tool (so-called because it “adds Lime”) will do this, and will perform
static checks to ensure that type safety is maintained. Specifically,

� Any Java interface may be labelled universal, as long as all of its superinterfaces are
so-labelled either previously or at the same time.

� Any Java class may be labelled universal, as long as all of its supertypes are labelled
universal either previously or at the same time and its existing fields and methods
meet the requirements for universal types. If such a class has fields and is not final
(meaning that it may subsequently have value subtypes), code is generated to support
contents-based equality testing.

� Any final or static Java method and any Java constructor may be labelled local or
glocal if it meets the definition required for these properties. Note that it would not
be safe to so-label a non-final instance method because subsequent subclassing could
produce an unsafe state. Also, the rules are necessarily stricter for Java methods
because the only “repeatable” static fields in Java classes are compile time constants.
To get a set of Java methods to pass the local or glocal restrictions it may be necessary
to label them as a group.

20.5 New Grammar

The use of the backtick (“`”) as an escape for identifiers is a change to the lexical grammar
for identifiers (section 3.8 of the Java Language Specification). The following production is
added.

Identifier ::= ’‘’ IdentifierChars

Although the formal statement does not capture the following subtlety, it is nevertheless
true. The backtick escape is always elided and results in a seeming identifier that might
otherwise match a keyword. If the resulting identifier has the same characters as a keyword
newly introduced by the Lime language (a word that is not reserved in Java) it will be a

135

legal identifier. However, if the resulting character sequence matches a word that was already
reserved in the Java language, the result is still erroneous. In part, this makes a virtue of
a limitation in our current implementation (which relies on being able to translate Lime to
syntactically legal Java). However, it is a reasonable limitation, since the backtick is just an
escape mechanism to support Java compatibility, and having this restriction enables similar
implementations that may be undertaken by others.

The grammar surrounding the tilde escapes for generics and arrays are documented in
those sections.

136

Chapter 21

Testing

21.1 Random Values

In order to promote systematic testing, most of the classes in lime.lang and lime.util implement
the RandomlyGenerable interface, which provides one method, randomValue(), that takes a
random generator and uses it to produce a random value of the class:

public universal interface RandomlyGenerable<T> {
glocal T randomValue(IRandom generator);

}

This creates a random value but requires an instance of the object to do so; by convention,
such classes also include a static method with the same functionality:

public static glocal T random(IRandom generator);

For example:

IRandom generator = ...;
uint randomUnsigned = uint.random(generator);
BoundedMap<color> randomMap = BoundedMap<color>.random(generator);
Set<int> s = ...;
Set<int> randomIntSet = s.randomValue(generator);

There are several random generators implementing IRandom in lime.util. Some of them
use external (global) random sources, like the nanosecond clock, and will therefore cause
invocations of randomValue() to be global method calls; others use a deterministic pseudo-
random algorithm and are therefore local.

For some classes, it may not be statically determinable whether they can generate random
instances of themselves because it depends on the types of their contained values. For
instance, ArrayVSet implements RandomlyGenerable, but if it contains an element type that
is not itself RandomlyGenerable, then it may throw a Contained−Value−Not−Randomly−
Generable−Exception; if for some other reason a class can not generate a random value, it
can throw a Random−Value−Generation−Exception.

137

21.2 Interface Testing

With a disciplined programming practice, the operations provided by an interface often
obey certain invariants, pre-conditions, and post-conditions. The random value generation
methods described above can be used to test whether an implementation of an interface
obeys these properties.

The package lime.test contains such tests for all of the the key interfaces in lime.lang as
well as a testing framework that can be used to build ones’ own tests. Programmers choosing
to implement these interfaces from lime.lang should use these tests to ensure that they honor
the associated contracts.

Programmers are also encouraged to think carefully before overriding the operators used
in these interfaces when their overridden operators have a semantics different from that
specified in the core Lime interfaces. Disciplined use of operator overloading makes programs
more maintainable and easier to understand.

The key interfaces are:

� comparable

� dense

� bounded

� numeric

� logical

� integral

� IBinaryWord

� IBinaryNumber

� IBinaryInteger

� Indexable

� Concatenable

The testing framework will repeatedly generate random values of the class being tested,
and invoke the programmer-supplied test() method. A section of the testing method for the
logical class is shown below:

public class LogicalTest<T extends logical<T> & RandomlyGenerable<T>>
extends TestBase<T>

{
public void test(T t, T u, T v) {

verify(”involution”, eq(t, ˜ ˜ t));
verify(”and idempotency”, eq(t & t, t));
verify(”and commutativity”, eq(t & u, u & t));
verify(”and associativity”, eq(t & (u & v), (t & u) & v));
...

138

}

...
}

139

Acknowledgments

Shan Shan Huang (Georgia Tech) made substantial contributions to an earlier version of the
Lime language during her internship at IBM in 2007.

Feedback from the entire Liquid Metal team has improved the language. In addition
to the manual’s authors and Shan Shan, the team includes Amir Hormati (University of
Michigan), an intern in 2007 and 2008, Andre Hagiescu (National University of Singapore),
an intern in 2008, Myron King (MIT), an intern in 2009, Christophe Dubach (University of
Edinburgh), visiting scientist in 2010, and Sunil Shukla, a post-doctoral fellow in 2010-2011.

We also thank Doug Lea and David Ungar for their valuable comments on earlier versions
of this document.

140

Bibliography

[1] J. Auerbach, D. F. Bacon, P. Cheng, and R. M. Rabbah. Lime: a Java-compatible
and synthesizable language for heterogeneous architectures. In Proceedings of the ACM
SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and Ap-
plications, Oct. 2010.

[2] D. F. Bacon. Kava: A Java dialect with a uniform object model for lightweight classes.
Concurrency—Practice and Experience, 15(3–5):185–206, Mar.–Apr. 2003.

[3] S. S. Huang, A. Hormati, D. F. Bacon, and R. M. Rabbah. Liquid metal: Object-oriented
programming across the hardware/software boundary. In J. Vitek, editor, ECOOP,
volume 5142 of Lecture Notes in Computer Science, pages 76–103. Springer, 2008.

[4] J. Sasitorn and R. Cartwright. Efficient first-class generics on stock java virtual machines.
In SAC ’06: Proceedings of the 2006 ACM symposium on Applied computing, pages 1621–
1628, New York, NY, USA, 2006. ACM.

[5] M. Viroli and A. Natali. Parametric polymorphism in java: an approach to translation
based on reflective features. In OOPSLA ’00: Proceedings of the 15th ACM SIGPLAN
conference on Object-oriented programming, systems, languages, and applications, pages
146–165, New York, NY, USA, 2000. ACM.

141

	Introduction
	Java Compatibility
	Package lime.lang
	The Lime Development Kit
	More About the Manual

	Generics
	The Set of Reifiable and Instantiable Types
	Default Initial Value
	Instanceof with Type Parameter

	Primitive Types
	Restrictions on the Use of Java Generics in Lime
	Reflection, Classes, and Class Literals
	Type variables in Static Members
	Type Parameters in Static Nested Classes

	Some Non-Obvious Limitations of Type Variables in Lime Generics
	Source Availability
	Ordinal Parameters
	Java Compatibility
	New Grammar

	Type Definitions
	Java Compatibility
	New Grammar

	Type Inference
	New Grammar

	User-defined Operators
	Compound Operators
	Method-like Syntax
	Java Compatibility
	New Grammar

	Values
	Value Classes
	Value versus Non-Value Types
	Initialization of Values
	Type-checking Value Types
	Universal Classes and Interfaces
	Generated methods
	Special Rules for Assignment of Null
	Next and Previous Operators for Values
	The Top of the Value Type Hierarchy
	The Role of the Primitive Types
	Java Compatibility
	New Grammar

	Bounded Types
	Ranges
	New Grammar

	Ordinals
	Shorthands for Ordinal Types.
	Java Compatibility
	New Grammar

	Value Enums
	Default Values
	Bit Literals
	Java Compatibility
	New Grammar

	Strings
	Java Compatibility
	ToString Conversion
	Equality Relationships

	Arrays
	Range Indexing
	Multidimensional Arrays
	Java Arrays
	Confined Integer and Range Expressions
	Array Creation
	Repeats in Array Initializers

	Arrays as Generic Types
	Bit Array Literals
	Java Compatibility
	New Grammar

	Tuples
	Tuple Element Access
	Tuple Element Binding
	Java Compatibility
	New Grammar

	Local and Global Methods
	Other Restrictions
	Repeatable Static Fields
	Local/Global Polymorphism
	Generics and Glocal Methods

	Multiple Method Definitions
	The Mutable Class and the Local Interface
	Debugging
	Java Compatibility
	New Grammar

	Stream Computation
	Stream Types
	Inspection and Iteration

	Ports
	Tasks
	Isolation
	Task Types
	Logical Rates

	Filter Creation
	Filters from Static Methods
	Filters from Value Instance Methods and Operators
	Filters from Non-value Instance Methods
	Abbreviation of Worker Methods

	Direct Use of Filters
	Connecting Ports and Streams
	Sources and Sinks
	Sources
	Sinks

	Task States
	Constant Task Parameters
	Splitting and Joining
	Joining Streams
	Splitting a Stream
	Splitters and Joiners
	Other CompoundTask Types
	Compound Connect Operations

	Schedulability of Task Graphs
	New Grammar

	Rate Matching
	Size Directives
	Underflow Handling
	Shifting
	New Grammar

	Messaging
	Timing of Message Delivery
	Downstream Messaging
	Upstream Messaging
	Unspecified Delay
	Matchers
	Discussion

	Java Compatibility
	New Grammar

	Collective Operations and Reductions
	Collective Operations
	Data Parallelism

	Reduction
	Optimization

	Java Compatibility
	New Grammar

	The ``Closed World'' Model
	New Grammar

	Java Compatibility
	Source Compatibility with Java
	Lexical Issues: Keywords
	Semantic Issues

	Binary Compatibility with Java
	Gotchas
	String Equality

	The pH Tool
	New Grammar

	Testing
	Random Values
	Interface Testing

